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3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo



Editorial Policy
The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in
physics research and teaching -- quickly, informally but with a high quality. Manuscripts
to be considered for publication are topical volumes consisting of a limited number of
contributions, carefully edited and closely related to each other. Each contribution should
contain at least partly original and previously unpublished material, be written in a clear,
pedagogical style and aimed at a broader readership, especially graduate students and
nonspecialist researchers wishing to familiarize themselves with the topic concerned. For
this reason, traditional proceedings cannot be considered for this series though volumes
to appear in this series are often based on material presented at conferences, workshops
and schools (in exceptional cases the original papers and/or those not included in the
printed book may be added on an accompanying CD ROM, together with the abstracts
of posters and other material suitable for publication, e.g. large tables, colour pictures,
program codes, etc.).

Acceptance
Aproject canonlybeaccepted tentatively forpublication,byboth theeditorialboardandthe
publisher, following thorough examination of the material submitted. The book proposal
sent to the publisher should consist at least of a preliminary table of contents outlining the
structure of the book together with abstracts of all contributions to be included.
Final acceptance is issued by the series editor in charge, in consultation with the publisher,
only after receiving the complete manuscript. Final acceptance, possibly requiring minor
corrections, usually follows the tentative acceptance unless the final manuscript differs
significantly fromexpectations (projectoutline). Inparticular, the series editorsareentitled
to reject individual contributions if they do not meet the high quality standards of this
series. The final manuscript must be camera-ready, and should include both an informative
introduction and a sufficiently detailed subject index.

Contractual Aspects
Publication in LNP is free of charge. There is no formal contract, no royalties are paid,
and no bulk orders are required, although special discounts are offered in this case. The
volume editors receive jointly 30 free copies for their personal use and are entitled, as are the
contributing authors, to purchase Springer books at a reduced rate. The publisher secures
the copyright for each volume. As a rule, no reprints of individual contributions can be
supplied.

Manuscript Submission
The manuscript in its final and approved version must be submitted in camera-ready form.
The corresponding electronic source files are also required for the production process, in
particular the online version. Technical assistance in compiling the final manuscript can be
provided by the publisher’s production editor(s), especially with regard to the publisher’s
own Latex macro package which has been specially designed for this series.

Online Version/ LNP Homepage
LNP homepage (list of available titles, aims and scope, editorial contacts etc.):
http://www.springer.de/phys/books/lnpp/
LNP online (abstracts, full-texts, subscriptions etc.):
http://link.springer.de/series/lnpp/



P. Nielaba M. Mareschal G. Ciccotti (Eds.)

Bridging Time Scales:
Molecular Simulations
for the Next Decade

1 3



Editors

Peter Nielaba
Universität Konstanz
Lehrstuhl für Theoretische Physik
Fachbereich Physik
78457 Konstanz, Germany

Michel Mareschal
CECAM
Ecole Normale Supérieure de Lyon
46 Allée d’Italie
69364 Lyon Cedex 07, France

Giovanni Ciccotti
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Preface

“Bridging the Gap!”: We had been discussing the challenges to be met by the
atomistic simulation community for a few hours when someone came up with
this expression. As often happens in animated but exhausting discussions,
there was at the same time both enthusiasm and relief. People were relieved
by those three simple words which aptly described the main common trend
in the approaches analyzed by the participants at the meeting. The meeting
itself was held in a small town near Amsterdam, named Bussum, in order
to get Daan Frenkel with us, and its aim was to lay the foundations of a
large-scale European network in computational condensed matter statistical
physics. This was not the end of the story which saw the building of a large
collaboration in the form of the European Science Foundation (ESF) program
known as SIMU. This program, in fact, required further discussion and effort,
but it is probably correct to say that this simple formula helped initiate the
network because it succinctly expressed the intellectual attitude shared by
the participants in their effort to meet the actual challenges of the field.

First, which attitude? Molecular Dynamics and Monte Carlo simulation
techniques are nowadays well accepted theoretical tools to predict, by heavy
computing on realistic models, physical properties and dynamical processes
in materials. Their scope has steadily increased in the years since the pioneer-
ing work of the fifties. Applications are common from the most simple liquid
or solid materials to cover also, at least in principle, complex materials like
colloids, polymers or poly-electrolytes, not to mention proteins or biological
membranes. Most of those materials are studied experimentally, with atomic
scale resolution techniques, and are used in many industrial processes. The
theoretical understanding of their behavior is crucial in materials science also
to analyze the experiments. However, those behaviors extend over length and
time scales which are orders of magnitude longer and larger than the ones
that can be achieved by brute force simulations in a fully atomistic descrip-
tion. Thus the challenge is to be able to reach scales which can be of the order
of micrometers and seconds, starting from a fundamental level of description.
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Second, which challenge? There is an agreement on the analysis that most
of the progress made in recent years in the atomistic simulation of condensed
matter originate in the development of new methods of simulation more than
in the increase of available computing power, however impressive the latter
has been. No foreseeable increase in computing power will ever be sufficient to
give access to the large physical scales needed to describe material properties
of realistic complex materials. There is a strong need for further development
of methods able to address and, possibly, solve physical problems which are
multi-scale in nature. Biased Monte Carlo and ab initio MD techniques are
two beautiful examples of very successful progress.

There are, however, deeper connections in our community of “simulators”
which make possible the transfer of techniques. For example, people working
in polymer physics can easily understand the numerical issues which arise in
Quantum Monte Carlo techniques and the progress in one field can be quickly
transferred to the other. To give another example, the numerical approach
behind the Car and Parrinello method can and has been used in classical
statistical mechanics, via classical density functional theory, to get “exact”
thermodynamic equilibrium averages over solvent configurations. In other
words, the technical culture, often based on concepts of statistical physics,
is shared, and thus allows an easy exchange of ideas and an efficient form of
interdisciplinary collaboration.

This provides another reason (other than the more important one of main-
taining the ambition and pride of the community) for the variety of subjects
in this book which reproduces articles written after the conference Bridging
the time-scale gap was held, at the University of Konstanz, in September
2001. The conference was organized within a series of activities supported
by the 5-year ESF program SIMU (web site : http://simu.ulb.ac.be/). It fo-
cused on the subject of the time scale issue and got a large and enthusiastic
participation: besides the 42 invited talks, there were more than one hun-
dred posters and around 250 participants. There have been of course several
large conferences dedicated to computational physics, but the peculiarity of
this one was its focus on a well-defined theme, one however allowing inter-
disciplinary participation because of the variety of approaches and levels of
description. It had similar spirit to some of the advanced schools organized
previously, such as the summer school in Como in 1995 1 preceded by similar
but more restricted initiatives such as the collective book on Monte Carlo
methods in statistical physics in 1986 2 or the proceedings of the Varenna
1 Monte Carlo and Molecular Dynamics of Condensed Matter Systems,

edited by K. Binder and G. Ciccotti, SIF, Bologna, (1996).
2 Monte Carlo Methods in Statistical Physics,

edited by K. Binder, Topics in Current Physics 7, Springer-Verlag (1986).
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school in 1985,3 which have been important references in the community for
many years. At the end of the conference, the scientific committee (the editors
plus Daan Frenkel) discussed the possibility of offering selected speakers the
opportunity to contribute to a book which would be representative of confer-
ence topics and discussions and could remain a good testimony of ideas and
techniques on which to build progress in the forthcoming years.

The result goes well beyond our best expectations both for the number
and the quality of the contributions that provide a fair picture of the state-
of-the-art in the field! We have reproduced the book chapters in the order
chosen for the conference, and it is amazing to see that the order follows a
kind of logic, starting with the largest scale, where proteins fold and unfold,
and ending with Quantum Monte Carlo simulations where, as it was once
said, one is bridging the gap in the other direction!

The book starts with contributions dealing with biological and polymer
physics. All-atoms and lattice models are used to investigate protein folding
dynamics and some of its mechanisms (Eugene I. Shakhnovich et al.) while
coarse-grained models are developed in order to describe lipid mono-layers
and bi-layers (Steve O. Nielsen and Michael L. Klein) on the relevant time
scales. The contribution by Doros N. Theodorou presents a more methodolog-
ical approach, with various fast (bridging!) algorithms allowing to equilibrate
polymers. In his chapter, Alexander Grosberg introduces the new concept of
commitor in order to deal with dynamics in conformation space : this concept
was elaborated from an analysis of Monte Carlo simulations of protein folding
and it is hoped that it could initiate new ideas in the simulation community.
Kurt Kremer et al., in turn, describe micro-meso mapping schemes for poly-
meric materials and present results of a combined approach of mesoscale
model simulations and quantum mechanical density functional theory calcu-
lations for polycarbonates near surfaces.

The next chapters deal with the statistical mechanics of complex mate-
rials. First, the coarse-graining through effective interactions allows Jean-
Pierre Hansen and Hartmut Löwen to describe equilibrium properties of
polymer and colloid fluid mixtures. The slow dynamic of glasses require not
only coarse-graining but also some specific techniques like parallel tempering
(Kurt Binder et al.). This problem is examined in a more systematic way
by Nigel Wilding and David P. Landau who review several methods allow-
ing faster convergence in lattice and continuous models. The hydrodynamic
evolution is then investigated by Christopher P. Lowe and Sauro Succi who
apply lattice-Boltzmann and hybrid techniques to various flow problems.

3 Molecular-Dynamics Simulation of Statistical-Mechanical Systems,
edited by G. Ciccotti and W.G. Hoover, SIF, Amsterdam, North-Holland (1986).
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Multi-scale methods are also described and applied to the problem of solid
friction where a direct simulation inspection has permitted progress in the
basic mechanisms involved (Martin H. Müser).

Three chapters of a more methodological nature follow: they are the con-
tributions on the transition path sampling (Christoph Dellago and David
Chandler), on the stochastic difference equation (Ron Elber et al.) and, fi-
nally, on the proper treatment of long range interactions. Transition path
sampling was explained as throwing ropes over a mountain path in the dark
and it deals with the computation of rate constants when the reaction mech-
anisms are not precisely known. Stochastic dynamics is being introduced in
order to generate long-time trajectories. Problems with long-range Coulom-
bic and dipolar systems are then treated by Dominique Levesque.

The last part of the book deals with simulation techniques involving a
quantum aspect. It starts with a description of ab initio MD recent advances
by Glenn J. Martyna and Mark E. Tuckerman. The use of this technique
is heavily time-consuming to create a serious time-scale problem. Ways to
overcome the time-scale barrier are described in the contribution by Ursula
Röthlisberger, Michiel Sprik, and Jürg Hutter: bias potentials and electronic
bias potentials are being introduced, together with the explanations on how
to apply the method, and to compute rate constants. Often it is necessary
to treat part of the system classically and, in the presentation by Raymond
Kapral and Giovanni Ciccotti, the embedding of a quantum system inter-
acting with classical degrees of freedom is studied in a systematic way. The
book ends with a contribution by David Ceperley, Mark Dewing, and Carlo
Pierleoni where a classical Monte Carlo simulation for the ions is coupled
to a Quantum Monte Carlo simulation for the electrons in order to describe
liquid and metallic behavior of quantum hydrogen. Time scales in this ap-
proach are an order of magnitude smaller than in the first chapter, however
the numerical problems to overcome are very familiar, as one knows from the
similarity with polymer physics.

It is our belief that multi-scale and hierarchical modeling will be used
more and more in the future. Our ambition in assembling these contributions
is not only to show the great vitality of the field with the many different
approaches to the time-scale problem, but also to help readers to understand
what are the real issues and difficulties in applying those techniques to the
many problems arising in the microscopic description of the thermodynami-
cal properties of matter. Let us hope that the ideas and methods presented
in this book will have a lasting impact.
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Ursula Röthlisberger, Michiel Sprik, Jürg Hutter . . . . . . . . . . . . . . . . . . . . 413

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
15.2 Overcoming the Time Scale Barrier: Enhanced Sampling

Techniques for ab initio Molecular Dynamics Simulations . . . . . . . . 414
15.2.1 Time Scale Limitations

in ab initio Molecular Dynamics Simulations . . . . . . . . . . . . . 414
15.2.2 The Use of Classical Force Fields as Bias Potentials

for an Enhanced Sampling of Conformational Transitions . . 415
15.2.3 Finite Electronic Temperatures

as Electronic Bias Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
15.3 Computation of Acid Dissociation Constants . . . . . . . . . . . . . . . . . . 419

15.3.1 Time and Length Scales in Aqueous Chemistry . . . . . . . . . . 419
15.3.2 Determination of Free Energy Profiles . . . . . . . . . . . . . . . . . . . 420
15.3.3 Statistical Thermodynamics of Gas-Phase Equilibria . . . . . . 421
15.3.4 Reversible Work and Equilibrium Constants . . . . . . . . . . . . . 422
15.3.5 Controlled Dissociation in a Small Box . . . . . . . . . . . . . . . . . . 424
15.3.6 Computation of the Water Dissociation Constant . . . . . . . . . 425
15.3.7 Application to Weak Acids and Evaluation of Method . . . . . 427

15.4 Linear Scaling Electronic Structure Methods
for ab initio Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
15.4.1 Kohn–Sham Matrix Calculation . . . . . . . . . . . . . . . . . . . . . . . . 429
15.4.2 Wavefunction Optimization;

Solving the Kohn–Sham Equations . . . . . . . . . . . . . . . . . . . . . . 434
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Part X Quantum Simulations

16 A Statistical Mechanical Theory of Quantum Dynamics
in Classical Environments
Raymond Kapral, Giovanni Ciccotti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
16.2 Quantum Dynamics and Statistical Mechanics . . . . . . . . . . . . . . . . . 446



Table of Contents XXI

16.2.1 Mixed Representation of Quantum Statistical Mechanics . . . 448
16.3 Quantum-Classical World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
16.4 Nature of Quantum-Classical Dynamics . . . . . . . . . . . . . . . . . . . . . . . 453
16.5 Time Evolution of Dynamical Variables . . . . . . . . . . . . . . . . . . . . . . . 458

16.5.1 Equations for Canonical Variables . . . . . . . . . . . . . . . . . . . . . . . 461
16.6 Quantum-Classical Equilibrium Density . . . . . . . . . . . . . . . . . . . . . . . 462
16.7 Quantum-Classical Time Correlation Functions . . . . . . . . . . . . . . . . 463
16.8 Simulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

16.8.1 Spin–Boson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
16.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

17 The Coupled Electronic–Ionic Monte Carlo
Simulation Method
David Ceperley, Mark Dewing, Carlo Pierleoni . . . . . . . . . . . . . . . . . . . . . . 473

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
17.2 The Coupled Electronic-Ionic Monte Carlo Method . . . . . . . . . . . . . 476
17.3 The Penalty Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
17.4 Energy Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

17.4.1 Direct Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
17.4.2 Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
17.4.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

17.5 Choice of Trial Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
17.6 Twist Average Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 482
17.7 Fluid Molecular Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
17.8 The Atomic–Metallic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

17.8.1 Trial Wave Function and Optimization . . . . . . . . . . . . . . . . . . 486
17.8.2 Comparison with PIMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
17.8.3 Hydrogen Equation of State

and Solid–Liquid Phase Transition of the Protons . . . . . . . . . 494
17.9 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499



List of Contributors

Cameron Abrams
Max-Planck-Institute
for Polymer Research
Postfach 3148
Ackermannweg 10
55021 Mainz, Germany

Jörg Baschnagel
Institut Charles Sadron
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1 Sidechain Dynamics and Protein Folding
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Abstract. The processes by which protein sidechains reach equilibrium during a
folding reaction are investigated using both lattice and all-atom simulations. We find
that rates of sidechain relaxation exhibit a distribution over the protein structure,
with the fastest relaxing sidechains being involved in kinetically important posi-
tions. Traversal of the major folding transition state corresponds to the freezing of
a small number of residues, while the rest of the chain proceeds towards equilibrium
via backbone fluctuations around the native fold. The post-nucleation processes by
which sidechains relax are characterized by very slow dynamics, and many bar-
rier crossings, and thus resemble the behavior of a glass. At optimal temperature,
however, the nucleated ensemble is energetically very close to equilibrium; slow re-
laxation is still observed. At lower temperatures, sidechain relaxation becomes a
significant and very noticeable part of the folding reaction.

1.1 Introduction

Protein folding is a complex, single molecule process in which a polypeptide
backbone with diverse sidechain groups efficiently searches a vast conforma-
tional space and finds a unique native fold. Most theoretical attempts to
understand the folding process have modeled the polymer, in one way or an-
other, as a chain of beads which undergoes a backbone freezing transition.
The internal degrees of freedom of each sidechain (the χ angles) add another
layer of difficulty to understanding the folding process.
In unfolded conformations, the barriers between rotamer states of side-

chains are low [1] and sidechains easily convert between them. Upon fold-
ing, buried sidechains are usually found in a single, well-defined rotamer
state [2,3,4,5], and interconversion between rotamers, when energetically al-
lowed, is slow due to high barriers [6,7]. Because protein folding is thought
to be a sidechain-driven process, finding the native rotamers is an integral
part of the folding reaction. Do sidechains reach their native conformations
simultaneously with the backbone, or is sidechain ordering a separate pro-
cess that occurs after the native fold has been reached? This question poses
a challenge for experimentalists and theoreticians alike.
We study the dynamics of sidechains during the folding process via a sim-

plified model, which captures the basic physical aspects of the problem, as

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 3–24, 2002.
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well as an all-atom protein folding simulation, in which the full complexity
of sidechain shapes and mobility is represented. We start by modifying the
classic lattice model of proteins to account for internal sidechain states of
each amino-acid. This new model, like its predecessors, is found to fold in a
cooperative all-or-none manner. The presence of internal degrees of freedom
at each site, however, allows the backbone to reach the native conformation
before all of the sidechains have become properly ordered. Since energy comes
from sidechain-sidechain interactions, completion of the folding reaction re-
quires both the backbone and the sidechains to reach their native states.
We find that, depending on simulation temperature, the backbone can be-
come native-like long before the internal sidechain states reach equilibrium.
By measuring the rate of sidechain ordering for each monomer, we find that
there is a cluster of residues whose sidechains become ordered very fast, while
the relaxation rates of other positions is up to an order of magnitude slower.
The fast cluster turns out to be very close to the folding nucleus identified
previously for the structure we use.
A small number of kinetically important residues thus freeze in their

native “rotamer” state on a fast timescale, pulling the backbone strongly
toward its native conformation, while the rest of the protein relaxes on a
slower timescale toward its equilibrium energy. This slow phase could not be
observed in previous lattice simulations because it arises entirely from the
presence of the internal sidechain states of each monomer. We find that the
slow-phase relaxation of energy to equilibrium follows stretched-exponential
kinetics, suggesting that the dynamics are exhibiting some glass-like proper-
ties due to sidechains. We note that backbone-only lattice models have been
shown to be free of a glass transition over a wide range of temperatures [8].
Various experimental and theoretical studies have suggested that some as-
pects of protein folding might be interpreted as glassy behavior [9,10,11,12],
though whether these phenomena are attributable to backbone, sidechains,
or solvent remains to be seen.
Because the lattice model is computationally very fast, one can observe

relaxation to equilibrium even at lower temperatures. This becomes impossi-
ble once more realistic models are used. Our previous work using an all-atom
simulation, with a simplified Gō potential [13,14], demonstrated that folding
to the native backbone topology (rms deviation < 1 Å from crystal struc-
ture) happened within a reasonable amount of time, but that full relaxation
to equilibrium could not be observed at temperatures below a certain thresh-
old. Thus the slow phase observed in the lattice model is also present in the
all-atom model, but cannot be fully characterized therein due to prohibitively
long simulation times. This does not prevent us from identifying the residues
that exhibit fast transition to the native state, because the fast phase in
which the native backbone conformation is reached is fully accessible to our
simulation.
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For Protein G, the folding transition state was rigorously characterized
using the all-atom simulation [14]. For this study, we have reanalyzed the
folding trajectories obtained from the protein G study to identify the residues
whose sidechains exhibit fast relaxation to their native state. We find that
these same residues play a key role in the transition state ensemble. As in
the simpler lattice model, we find a wide distribution of sidechain relaxation
times. Two very different models are thus in marked agreement; together they
provide a clear picture of sidechain dynamics during the folding process.

1.2 Results

In order to mimic the internal degrees of freedom of protein sidechains (the
χ angles), we modified the standard lattice model by adding n sidechain
states to each residue. This is consistent with the observation that protein
sidechains usually populate discrete rotameric configurations [2,3]. The state
of each residue at any given time is a number between 0 and n−1. Of these n
states only one state (the 0 state) was designated as native for each residue.
When two residues came into contact during simulation, they interacted only
if both were in their native state - a contact formed with one or both residues
in a non-native sidechain state did not contribute to the energy of the con-
formation (see Methods). While there are other ways to model a native vs.
non-native rotamer interaction using a lattice model (for example, we could
have assigned some fraction of the native energy when non-native monomers
interact), we chose the present scheme for simplicity. Previous lattice models
have added sidechain degrees of freedom by letting sidechains occupy a lattice
site [15,16,17]. In our model, sidechain states are treated implicitly, resulting
in a considerable computational advantage.
An important aspect of sidechain motion in real proteins is that upon

compactification of the polypeptide chain, sidechain motion is restricted due
to the excluded volume effect [1,18]. In order for sidechains to repack in the
protein interior, the backbone must perform a “breathing motion” [6], allow-
ing sidechains some extra room to move, and thus making certain sidechain
configurations momentarily available. Any model of sidechain dynamics must
incorporate this effect in some way. Our all-atom simulation contains this ef-
fect explicitly. In the lattice simulation we mimic this effect by our choice of
moves. In addition to the usual lattice backbone moves, we allow the sidechain
states of a given residue to interconvert when there are no other residues in
contact with it (see Methods). Thus, when the chain is fully compact, the
sidechain states are frozen until a backbone fluctuation frees some residues,
and allows their states to change.
We tested the lattice model with 1, 2, and 4 internal states per monomer

using a 48-mer sequence designed to fold into a 3 x 4 x 4 cube. The n = 1
model corresponds to the standard lattice model and is shown here only as
a control. The thermodynamics of these models is shown in Fig. 1.1. All are
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Fig. 1.1. Thermodynamics of 48-mer lattice models. Each point corresponds to
an average of energy over a lattice simulation started at the native state. Each
simulation was run for 3 ×108 steps and energy was sampled every 3 ×105 steps.
The correlation time of energy was found to be much less than our sampling interval
at all temperatures. The number of internal sidechain states for each model is
indicated by the color and shape of the points, as in the legend. Fits to a two-state
thermodynamic model are given in solid lines colored to match the corresponding
lattice model that was used. Parameters for these fits are given in Table 1.1.

Table 1.1. Two-state Fits to Thermodynamic Data. Thermodynamics shown in
Fig. 1.1 was fit using the form f(x) = a3 + (a0 − a3) exp(a2 − a1/T )/(1 + exp(a2 −
a1/T )), where a3 is the native state energy of -1361.

n a0 a1 a2

48-mer

1 -82 263 13.8

2 -3.6 222 16.0

4 38 151 14.2

seen to exhibit a cooperative temperature transition, with the transition tem-
perature getting progressively lower as the number of internal states of each
monomer increases. The lowered transition temperature is to be expected as
the increased entropy of the model (due to more internal states) necessarily
leads to some destabilization. The transition region becomes narrower as n
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Fig. 1.2. Kinetics of the 48-mer model with 4 internal states per monomer. Panel
A indicates the MFPT for reaching native energy by circles, and the average time
to reach the stable native backbone by squares. Panel B shows the time to reach
the stable backbone with diamonds, and the amount of time to go from the native
backbone to the native energy with x-marks.

increases, due to the increase in entropy of the unfolded state relative to the
folded state.
We studied the kinetics of these models by plotting the average folding

time as a function of temperature (see Fig. 1.2). The models with n > 1
possess the property that the backbone can reach full nativity before all of
the sidechains have become native. This leads to the interesting question of
how the polymer chain reaches its native energy. That is, does the formation
of the native backbone lead to immediate sidechain ordering, or do sidechains
relax slowly to equilibrium after the chain has folded?
To answer this question, we plotted both the average time to reach the

native energy (which corresponds to full sidechain ordering), and the average
time to reach the native backbone in Fig. 1.2A. We find that at temperatures
above the optimal folding temperature, the native energy is reached immedi-
ately after the native backbone is found, and thus sidechain ordering is fast.
At low temperatures, on the other hand, the native backbone is reached long
before native energy is achieved, and sidechain ordering is slow.
We consider a kinetic model with three steps:

Unfolded Backbone −→ Folded Backbone −→ Sidechain Ordering

Figure 1.2B shows the average time of the first and second steps plotted as
diamonds and crosses, respectively. We immediately see that for high tem-
peratures, the sidechain ordering step is several orders of magnitude faster
than the backbone folding step. As temperature becomes lower, the sidechain
ordering time becomes comparable to the backbone folding time. At 1/T =
0.13 = 85% Topt, the rate of sidechain ordering becomes significant as it
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comes within an order of magnitude of the rate of backbone folding (Topt is
the temperature of fastest folding).
The mechanism for reaching full nativity (backbone and sidechains) at

temperatures lower than Topt thus seems to be one in which the native back-
bone structure is formed, followed by sidechain ordering via backbone fluc-
tuations around the native structure. It is entirely possible, however, that
the native backbone structure is reached during the folding trajectory but
unfolds immediately because too few sidechains are native. This, in fact, is
the case even at low temperatures. At some point in time, however, the na-
tive backbone structure is reached with enough native sidechains to remain
stable long enough to allow the rest of the sidechains to become ordered.
It is the ordering of sidechains after this stable native backbone is reached
that we identify as an important kinetic step at temperatures below Topt.
Accordingly, we plot the average time of the last pass to the native backbone
conformation in all of our figures. The time of the last pass is defined as the
first time the chain reached the native backbone without losing more than
50% of its native contacts before reaching the native energy. We found that
our results did not change significantly when we varied the fraction of native
contacts used in this definition.
Having observed that folding to the correct backbone structure occurs

significantly before the native energy is reached, we asked the following ques-
tions: Do some residues reach their native sidechain state faster than others?
If so which ones are fast, which ones are slow, and why?
In order to obtain individual sidechain ordering rates for each residue, we

performed many long folding runs. For each residue we averaged its sidechain
state over all folding runs: we assigned a value of 1 to the native internal state
of a given residue, and a value of 0 to all other internal states, and at each
timestep averaged these values over runs. Two traces obtained after averaging
are shown in Fig. 1.3. We fit a single exponential (see Methods) to each trace,
and obtained time constants for each of the 48 residues.
The distribution of rate constants for two temperatures is given in Fig.

1.4, and the fast residues are labelled by number. The first striking feature is
that these distributions span two orders of magnitude. At the lower of the two
temperatures (T = 7.4 = 81% Topt), most residues exhibit slow relaxation
rates, as seen by the sharp peak near zero. At the higher temperature of
Topt = 9.1, the height of the peak is reduced and more residues are seen with
faster rates.
At both temperatures, a small number of residues have very fast rates.

Many of these fast residues belong to the folding nucleus for this structure
that was identified in another study [19,20] using the standard lattice model.
In Fig. 1.5 we show the 48-mer structure colored by rate of sidechain freezing
at T = 7.4, and we indicate the original nucleus by large spheres. Of the
10 fastest residues that become fully ordered at T = 7.4, 7 belong to the
folding nucleus. While some of the nucleus positions are no longer kinetically
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Fig. 1.3. Average time traces for two representative residues in the lattice 48-
mer. Residue 35 is a nucleus residue exhibiting fast freezing, while residue 13 is
a non-nucleus residue with an average freezing rate. The black line is the best
single-exponential fit to the data.
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Fig. 1.4. Histogram of residue relaxation rates for 48-mer with 4 internal states.
Histograms for low temperature (T = 7.4) and optimal folding temperature (T =
9.1) are shown. Each residue was assigned a value of 1 if it was in its native sidechain
state, and 0 otherwise, and these numbers were averaged at each time step over
130 long runs. Rates were calculated by fiting a single exponential relaxation to
the resulting native occupancy curves for each residue. At T = 7.4, runs of length
2 ×109 were used; at T = 9.1, run length was 2 ×108. The fast positions at each
temperature are labelled by numbers on the histograms. Red numbers correspond
to positions which are more than 90% ordered in the native state, while green
numbers are less than 90% ordered.
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Legend

Nucleus Residue

Slow Freezing

Fast Freezing

48

1

Fig. 1.5. Lattice 48-mer structure colored by rate of freezing at T = 7.4. Nucleus
positions, determined in [19], are indicated by large spheres. Colors range from
white (slow-freezing) to blue (fast-freezing).

important in the present model, a strong signature of the old nucleus has
remained. Importantly, with the exception of residue 9, all of the fast positions
that reach full nativity are located in or near the original nucleus was found.
It appears, then, that at temperatures at or below Topt, a small group of

residues reaches full nativity quickly, thus organizing a critical piece of struc-
ture which remains fully stable, allowing the rest of the chain to gradually
order its sidechains. At T = 7.4, the formation of the stable piece traps many
sidechains in non-native states which take a very long time to reorganize
via backbone fluctuations. On the other hand, at Topt, as seen in Fig. 1.4,
more residues are found in the fast tail of the rate distribution, indicating
that backbone fluctuations are sufficient to allow sidechain ordering to oc-
cur more quickly once enough native structure has formed. Additionally, the
higher temperature requires a larger amount of native structure to be formed
in order to remain stable. These two effects act to eliminate sidechain order-
ing as a relevant kinetic step at Topt. This is seen clearly in Fig. 1.2 where
at Topt the sidechain ordering step is an order of magnitude faster than the
backbone folding step.
Another way to see that sidechain dynamics becomes markedly different

as temperature is lowered is given in Fig. 1.6. The red line indicates the
equilibrium energy at each of the two temperatures, while the solid green
line is a time trace of the average energy over all runs. The average time to
form the stable native backbone is 2.7 x 107 at T = Topt = 9.1, and 1.6 x
108 at T = 7.4, and is marked by an arrow in the figure. For T = Topt, the
arrow indicates that at the time of native backbone formation, the energy of
the chain is already very close to its equilibrium value. That is not the case
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Fig. 1.6. Relaxation of energy to equilibrium. By averaging energy at each time
step over 130 long runs, we obtained energy relaxation curves at temperatures 9.1
(panel A) and 7.4 (panel B). The same runs were used in Fig. 1.4. The green
curves in each figure are the average energy obtained from simulations. The red
line corresponds to the average energy at equilibrium, and was obtained for each
temperature by averaging over a long run started at the native lowest energy state,
as in Fig. 1.1. The dashed line is a fit to a three-state exponential model (see
Methods). A fit using a two-state exponential model yielded a nearly identical
curve. The arrows indicate the average time to reach the stable native backbone at
each temperature. The solid curve in panel A is a fit for T = 9.1 using a power-law
(−1092 + a0(x − a1)a2) with a0 = 1.73 × 108, a1 = −4.1 × 105, and a2 = −0.94.
The value of −1092 for the equilibrium energy corresponds to the red line.

at low temperature, at which there is a significant gap between the energy of
the folded chain and the equilibrium energy.
We tried to fit the relaxation of energy by a standard, single-barrier pro-

cess (single exponential) as well as a double exponential fit - both fits con-
verged to the same curve which is shown as a dashed line in Fig. 1.6. The fit is
not appropriate at any timescale. In particular, we note that at short times,
the trajectory may resemble a single-exponential process, but it develops a
very long tail at long times. A power-law fits the entire curve very well. The
power-law fit was done at T = 9.1 and is shown as the solid black line in Fig.
1.6A. At T = 7.4 we did not have enough data at long times to see relaxation
to equilibrium and therefore a fit would not be meaningful. The short-time
behavior can be modeled equally well by a single-exponential, and thus corre-
sponds to the classic nucleation mechanism in which the backbone topology
becomes organized [21]. Long-time non-exponential behavior is a signature
of glassy dynamics associated with the sidechain degrees of freedom and will
be discussed below.
Because lattice models can give only a schematic view of the folding pro-

cess, we proceeded to investigate sidechain dynamics in an all-atom simu-
lation of protein G, an alpha/beta protein that has featured in numerous
experiments [22,23,24]. The details of the simulation and a full characteriza-
tion of the folding kinetics of this protein are given elsewhere [14]. Our goal
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in the present study is to see how the results obtained from our simplified
lattice model compare with a much more realistic representation of a pro-
tein, and whether the same kind of analysis can shed light on the kinetics of
a real protein. In the lattice model we had to postulate a set of microscopic
dynamics for the internal states of each residue. In the all-atom simulation,
we model all sidechain atoms and torsions explicitly. We use the simulation
methodology described previously [25]. Because rotations around sidechain
χ angles are continuous, interconversion between sidechain rotamers can be-
come restricted if a residue is buried. Slowing down of sidechain dynamics
upon compactification emerges from the excluded volume interaction in this
model, and does not have to be included phenomenologically as in the lattice
model.
In a previous study [14], 50 folding trajectories each for the wild type and

D46A mutant of protein G, starting from random backbone and sidechain
conformations, were obtained. All runs were terminated after 2 × 109 steps,
by which time > 90% had reached the native backbone fold. We then applied
a time series analysis to the mutant data similar to the one we used for
the lattice model. Specifically, at each time step and for each residue we
recorded a value of 1 if the sidechain was in its native rotameric state, and a
0 otherwise. We averaged these values for each residue over all trajectories,
and then fit a kinetic model to the resulting traces. The parameters for the
fits for each residue are given in Tables 1.2 and 1.3.
Both the wild type and mutant protein G folds in simulations via partially

folded kinetic intermediates. Two of the most populated intermediates feature
nativity for only hairpin 1 and the helix or only hairpin 2 and the helix. A
two-state fit was therefore not appropriate for some of the residues. We used
a three-state fit for all residues, and found that for some of the residues
one rate constant was at least an order of magnitude larger than the other.
Such residues were classified as two-state, while the others were classified as
three-state. Figure 1.7 shows representative fits for two-state and three-state
residues. The relaxation rates given in Tables 1.2 and 1.3 span an order of
magnitude. The equilibrium level of ordering of each residue (parameter d in
the Tables) was obtained directly as an average over a long simulation started
in the native state, and was not obtained by fitting. Some residues are seen
to be highly ordered in the native state, while others are not. We looked at
the fastest residues whose equilibrium level was at least 70% ordered (bold
residues in the Tables).

The four fastest two-state residues are shown in Fig. 1.8. These four
make key contacts between the first hairpin and the helix. Phenylalanine 30
and leucine 5 have a strong hydrophobic interaction that secures the first
strand of the hairpin against the helix, while threonines 18 and 25 lock in
the second beta strand. The fastest two-state residues are thus seen to be
important in forming the kinetic intermediate. All residues involved in inter-
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Fig. 1.7. Average time traces for two representative residues in the D46A mutant of
protein G. F30 and F52 are typical two-state and three-state residues, respectively.
The black line is the best fit as described in Tables 1.2 and 1.3.

T25
T18

F30

L5

Protein G:
Fast residues, pre-intermediate

Hairpin 1

Fig. 1.8. D46A mutant of protein G residues exhibiting fastest two-state relaxation
to a highly ordered state. The four fastest residues whose relaxation curves fit well
to a two-state kinetic model, and whose equilibrium conformation is at least 70%
ordered are shown in pink. These residues occupy key positions in the intermediate
that is most populated in all-atom simulations of protein G folding [14]. The helical
residue F30 is lodged between L5 of beta-strand 1, and T18 of beta-strand 2, thus
organizing the entire structure of the intermediate which consists of hairpin 1 and
the helix. T25 makes contacts at the hairpin-helix turn.
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Table 1.2. Two-State Residues and Fits for the mutant protein G. Individual
residue relaxation curves were initially fit to the following three-state kinetic model:
f(x) = d + c(a/(b − a))exp(−bx/109) − c(b/(b − a))exp(−ax/109). The parameter
d, corresponding to fully equilibrated value of residue ordering, was obtained from
long equilibrium simulation, and was not varied in the fitting process. Standard
non-linear fitting was used to calculate a, b, and c. The residues listed in this table
h ad one rate constant that was at least an order of magnitude faster than the
other. The fits listed are therefore essentially two-state fits, and we report only the
relevant slow rate constant. The three-state model was used in order to determine
which residues were markedly two-state, and which ones were not. Asymptotic error
on parameter a is listed as well. The table is sorted by the rate constant a.

# a b c d err a err b

13K 0.174 - 0.064 0.094 ± 0.009 -
49T 0.190 - 0.150 0.483 0.008 -
37N 0.756 - 0.603 0.826 0.003 -
36D 0.779 - 0.168 0.326 0.01 -
15E 0.791 - 0.302 0.368 0.005 -
7I 0.941 - 0.676 0.965 0.003 -
21V 1.027 - 0.357 0.739 0.007 -
0V 1.035 - 0.379 0.813 0.01 -
24E 1.159 - 0.011 0.060 0.2 -
32Q 1.159 - 0.110 0.198 0.02 -
27E 1.283 - 0.442 0.539 0.008 -
33Y 1.308 - 0.810 0.991 0.003 -
31K 1.365 - 0.444 0.501 0.007 -
16T 1.504 - 0.606 0.958 0.005 -
3Y 1.581 - 0.779 1.000 0.003 -
17T 1.626 - 0.544 0.884 0.006 -
5L 1.724 - 0.636 1.000 0.004 -
22D 1.809 - 0.423 0.554 0.01 -
28K 1.882 - 0.026 0.057 0.00 -
18T 1.891 - 0.632 0.991 0.005 -
25T 1.931 - 0.596 0.985 0.005 -
30F 2.068 - 0.723 1.000 0.004 -

mediate formation are naturally found to be two-state, because formation of
the intermediate is a purely two-state process.
The three-state residues are ones whose sidechain ordering cannot proceed

normally until the intermediate has formed. They exhibit a lag phase as seen
in Fig. 1.7 while the intermediate forms. In Fig. 1.9 we show the three fastest
three-state residues of the mutant protein G which are significantly ordered at
equilibrium: valines 6 and 54 and phenylalanine 52. Interestingly, these three
residues all have the same rate of relaxation, suggesting that they become
ordered together. All three are involved in bringing beta-strand 4 in hairpin 2
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Table 1.3. Three-State Residues and Fits for the mutant protein G. Fits were
performed as in Table 1.2. The two rate constant obtained for the residues listed
here were within one order of magnitude of each other. The table is sorted by the
slower of the two rate constants, which is arbitrarily designated to be parameter a.

# a b c d err a err b

12L 0.279 1.974 0.601 0.842 ± 0.008 ± 0.1
8N 0.328 2.538 0.136 0.254 0.02 0.6
46D 0.464 2.524 0.058 0.191 0.07 1.0
55T 0.710 2.158 0.384 0.710 0.02 0.2
35N 0.722 3.301 0.034 0.187 0.1 1.8
47D 0.834 1.387 0.130 0.294 0.2 0.5
1T 0.859 5.414 0.426 0.780 0.01 0.3
4K 1.018 9.252 0.178 0.210 0.01 1.1
10K 1.02 1.02 0.027 0.053 0.03 0.03
42V 1.127 1.127 0.180 0.508 0.01 0.01
50K 1.205 1.205 0.369 0.386 0.004 0.004
56E 1.319 1.319 0.610 0.666 0.003 0.003
44T 1.361 1.361 0.341 0.689 0.006 0.006
43W 1.623 3.455 0.750 1.000 0.01 0.06
39V 1.719 1.719 0.567 0.984 0.004 0.004
45Y 1.734 1.734 0.883 0.999 0.002 0.002
53T 1.749 1.749 0.517 0.850 0.005 0.005
51T 2.020 2.020 0.510 0.841 0.006 0.006
54V 2.034 2.034 0.687 1.000 0.003 0.003
6V 2.035 2.035 0.642 0.966 0.004 0.004
52F 2.039 2.039 0.858 1.000 0.002 0.002
19K 2.111 3.089 0.049 0.068 0.4 0.9
40D 2.198 2.198 0.037 0.170 0.07 0.07
2T 2.923 2.923 0.285 0.628 0.02 0.02

into contact with the rest of the protein. Valine 6 establishes contacts between
beta-strands 1 and 4. Valine 54 makes contacts with valine 39 (located at the
C-terminus of the helix) which hold the end of hairpin 2 against the helix.
Phenyalanine 52 makes hydrophobic contacts with tyrosine 45, stabilizing
hairpin 2 internally, while also making contacts with the helix.
The data obtained from the all-atom simulation is in good qualitative

agreement with our lattice simulation. There is a wide distribution of residue
relaxation rates, with the fast residues located in topologically important
positions. The same mechanism seems to be at work here: key organizing
residues form quickly holding the overall structure together, while all other
residues relax more slowly toward equilibrium via fluctuations around the
native fold. On the lattice we found strong overlap between the fast residues
and the nucleus residues which organized the backbone transition state. In
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V6

Y45

F52

V54

V39

Protein G:
Fast residues, post-intermediate

Hairpin 2

Hairpin 1

Fig. 1.9. Protein G residues exhibiting fastest three-state relaxation to highly or-
dered state. Residues V6, F52, and V54, shown in pink, exhibited fastest three-state
relaxation, and remained highly ordered at equilibrium. All three are important
post-intermediate positions: F52 and V54 secure strand 4 of hairpin 2 to the helix,
while V6 makes contacts between the two hairpins.

order to make a similar comparison in the all-atom model, we proceeded to
characterize its transition state ensemble.
Because the transition state ensemble lies at the top of the folding free

energy landscape, its conformations are characterized by a 0.5 probability of
folding (pfold) during a tiny fraction of the entire folding time (“commitment
time” [26]). Assuming a commitment time corresponding to 0.005% of a full
folding run, we calculated the pfold of at least 5 structures per trajectory.
A histogram of contacts (Fig. 1.10) made by each residue for various pfold
ensembles reveals that phenylalanine 52 is the most important residue for
the final intermediate → native folding step. Its energy contribution, which
is proportional to the number of contacts it makes, appears to grow as the
ensemble pfold approaches one. Though less pronounced, similar increases
were seen for Y3, K4, L5, V6, A23, E27, F30, W43, Y45, K50, and V54. When
individual residue-residue contacts are histogrammed (Fig. 1.11), it is clear
that only a handful of over 1500 possible contacts are important for stabilizing
the transition state ensemble. These special contacts bring two hairpin 2
residues (F52 and V54) in contact with hairpin 1 (Y3, L5, V6) and helix
residues (E27 and F30). Because of the non-local and specific nature of these
contacts, folding in this model appears to be consistent with that proposed
under the theory of specific nucleation [21,27,28,29,30]. Detailed comparison
of these results with experimental data show excellent agreement [14].
It is clear that the nucleus characterizing the transition state ensemble

under our all-atom model of folding is nicely identified by the time-series
analysis of sidechain dynamics. The three fastest three-state residues - V6,
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Fig. 1.10. Dependence of residue nativity upon pfold. Conformations were binned
according to their pfold values, and the average change in number of contacts, with
respect to the pfold = 0 state, is plotted for each residue. Each curve corresponds
to an average over all conformations within the given range of pfold.

F52, and V54 - coincide with those which are most indicative of progress
along the pfold hypersurface. Although structures with pfold ≈ 1 will rapidly
attain native-like backbone topologies, energies will reach equilibrium values
very slowly, requiring simulations extending beyond the 2×109 cutoff we have
used here. This is because a fairly significant amount of energy is contributed
by sidechain-sidechain interactions, and the correct packing of sidechains is
significantly slower once the collapse transition has occurred. In our previous
study of crambin, we observed a similar phenomenon (which we referred to
as the “sidechain-packing trap”; see Fig. 6E in reference [25]), where the
folding of the backbone occurred on a faster timescale than that by which
the native energy was fully attained. The current pfold analysis demonstrates
that, in fact, not all residues participate equally in the slow relaxation of
conformations with incorrect packing. The nucleus residues (V6, F52, V54)
have to attain native packing relatively early as their energy contribution is
required to counterbalance the tremendous loss of backbone entropy upon
collapse to a native-like conformation.
Finally, we also note a striking similarity between the thermodynamic

data of the lattice model presented here and crambin obtained from all-atom
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Fig. 1.11. Dependence of specific contacts upon pfold. As in Fig. 1.10, conforma-
tions were binned according to their pfold values. For each pfold range, the average
change (with respect to the pfold = 0 state) in number of atom-atom contacts be-
tween all pairs of residues that make native contacts, is plotted for each pair of
residues. Residues pairs are arbitrarily ordered in a linear fashion along the x-axis.

simulations. For crambin, we observed a rather unusual departure from a
simple two state model when fitting the equilibrium energy against temper-
ature. As temperature was lowered below the transition point, the decrease
in energy was perfectly linear with temperature. As shown in Fig. 1.1, as
the number of sidechain states is increased, the same linear relation between
energy and temperature is observed. This suggests that sidechain degrees of
freedom lead to a noticeable contribution to the heat capacity, which domi-
nates the thermodynamic behavior at low temperatures.

1.3 Discussion

Our work demonstrates that the presence of sidechain degrees of freedom
leads to a wide distribution of residue relaxation rates, even within two-state
cooperative folding reactions. Figure 1.12 gives a schematic overview of the
relaxation mechanism we observed. Both in lattice and in all-atom simula-
tions, we found a small number of residues becoming fully ordered much
faster than the rest of the protein. This observation is consistent with the



1 Sidechain Dynamics 19

Fr
ee

 E
ne

rg
y

Reaction Coordinate

Nucleation

Coil

Native
Backbone

Equilibrium

Fluctuations

Free

Free

Free

Legend

Disordered Sidechain

Ordered Sidechain

Free Sidechain State
Can Interconvert

Fig. 1.12. Schematic diagram of barriers and their significance during the folding
reaction. The first barrier corresponds to the nucleation event which organizes the
backbone topology. Associated with this barrier is the freezing of a small group
of residues - the nucleus - into their native sidechain states (blue dots). Other
residues may still be partially disordered (red dots). The disordered residues become
increasingly native-like via barriers corresponding to backbone fluctuations which
momentarily free a few residues (see small arrows), and allow their sidechain states
to interchange. Barriers become higher as chain approaches equilibrium.

nucleation-condensation view of protein folding in which the major transi-
tion state of the folding reaction involves a few residues reaching their native
conformation. Importantly, in our simulations, we find that these nucleating
residues are not only in correct spatial geometry with respect to each other’s
centers of mass, but additionally their native rotamer has been singled out
and practically frozen. Once nucleation has occured, the native chain topology
is strongly stabilized and certain measures, such as compactness and perhaps
fluoresence, might indicate that the reaction is complete, and equilibrium has
been reached (see Fig. 1.12 after nucleation barrier). This, however, is not
the case as there exist many sidechains that have become partially ordered,
yet have still not reached equilibrium. Because the nucleating residues have
frozen and are rigid, and many other partially ordered residues are signif-
icantly stabilizing the fold, the non-equilibrated sidechains are not able to
convert easily to their native rotamer. They remain in a non-native state
until a backbone fluctuation momentarily allows them to interconvert. The
presence of backbone breathing motions in protein globules may therefore be
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useful not only for function, as has been suggested before [31,32], but also in
order to allow sidechain equilibrium to be achieved in a reasonable amount
of time.
In simulations, a kinetic intermediate is very easily observed as a set of

conformations which appears as a plateau within some range of energies dur-
ing many folding trajectories [33,25]. The existence of folding intermediates
in our simulation of protein G, while complicating our analysis somewhat,
has one important advantage: we are able to see that the kinetics of only half
of the sidechains are sensitive to the presence of the intermediate; the other
residues exhibit single-exponential relaxation. In other words, a kinetic in-
termediate can be completely invisible if the wrong position is used to probe
folding. We observed a distribution of residue relaxation rates for both the
pre- and post-intermediate steps. Each of these steps is a purely two-state
process as seen by the abrupt jump in rms deviation and energy. It appears,
then, that a few key residues reach nativity faster than all others and pro-
pel the chain through its transition state. Further relaxation after the major
event via backbone fluctuations yields a distribution of rates over the fold,
the exact nature of which is governed by the extent of backbone mobility at
each position in the ensemble.
At first glance this observation runs contrary to the belief that in two-

state transitions all parts of the structure must reach nativity at the same
rate. The argument goes that if structure is obtained gradually, with some
parts folding faster than others, then there are many distinct ensembles of
states for the chain to traverse. To dispell this fear, it is crucial to note
that the core residues which are observed in simulation to freeze fastest also
happen to be in key organizing positions. The ensemble of conformations
consistent with their freezing is highly native and therefore extremely small
compared with the ensemble of unfolded conformations. The major transition
of protein folding occurs between these two ensembles and is a two-state
transition in simulation as in reality. The entire molecule does not, however,
necessarily reach equilibrium concomitantly with this barrier crossing. There
can be many other smaller barriers associated with backbone fluctuations
which need to be crossed in order for all sidechains to reach equilibrium (see
Fig. 1.12).
It is important to note that temperature plays a key role in making

sidechain relaxation possible in a reasonable amount of time. At low tem-
peratures backbone fluctuations are small and sidechain relaxation is a very
noticeable and very long process, as seen in Fig. 1.6. At optimal folding
temperature, however, the energy of the post-nucleation ensemble is very
close to its equilibrium value. Sidechain relaxation is still very slow, follow-
ing stretched-exponential kinetics, but the product of the major transition is
significantly closer energetically (and therefore structurally) to equilibrium.
This suggests that under optimal conditions, the slow sidechain packing pro-
cess may not be physiologically relevant because the ensemble of folded yet
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unequilibrated molecules is structurally close enough to the native ensem-
ble that it may exhibit similar amounts of protection from proteolysis. The
relatively small gap between mispacked and native molecules at these temper-
atures suggests that relevant experiments must be sensitive enough to detect
such differences.
Since we could not observe full equilibration in the all-atom simulation,

we return to the lattice simulations in order to discuss the relevant post-
nucleation processes which establish equilibrium. In lattice simulations we
found that the dynamics during short times is reminiscent of the classic nu-
cleation mechanism that has been observed before [21]. Due to the existence
of sidechain states, the nucleation-organized backbone does not reach equi-
librium immediately. At long times the system can end up in traps which
require some degree of backbone motion to allow sidechains to interconvert.
This suggests that perhaps the energy landscape after the native fold has
been acquired consists of a series of barriers, associated with backbone fluc-
tuations, which must be crossed. As the system traverses these barriers it
moves to lower and lower energies. If one makes some simple assumptions
about the transition states for these barriers, the resulting relaxation process
can be shown to be non-exponential in time [34,35,36]. Both power-law [34]
and stretched-exponential [35] behavior can emerge depending on the na-
ture of the barriers. In the lattice simulations, we observed a power-law or
highly stretched exponential relaxation at long times. The landscape for slow
sidechain equilibration thus seems to be one of increasingly deeper wells,
rather than a single cooperative transition to nativity. This places sidechain
relaxation within the set of phenomena that can be characterized as a glass.
Classic lattice models without sidechain states, however, do not exhibit a
glass transition at any reasonable temperature [8]. Our lattice simulations
indicate that the presence of sidechain degrees of freedom may lead to glassy
relaxation, but further detailed characterization of the energy landscape, as
well as additional tests using more realistic models, are required to solidify
this claim.

1.4 Methods

Lattice Model with Internal Monomer States.We use a standard three-
dimensional lattice model in which each monomer occupies a single lattice
site. A fast-folding 48-mer sequence was obtained from a lattice protein evo-
lution study described in [20]. The standard Miyazawa-Jernigan parameter
set [37] is used to compute the energy of a conformation. Two monomers are
said to be in contact if they are nearest neighbors on the lattice, and are
not sequence neighbors. Additionally, each monomer has n internal states,
where n is a parameter of the model. We present data for 48-mer folding
with n = 1, 2, and 4. The internal state of each monomer is stored as a
number from 0 to n − 1. The 0 state is the native state, while the states
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1..n−1 are non-native. If n = 1 then all monomers remain native throughout
the simulation, and the model is equivalent to the standard lattice model.
Non-native monomers do not contribute to energy. That is, two monomers in
contact will contribute to energy only if they are both in their native state,
the 0 state.
The standard cubic lattice move-set [38] is used to evolve the backbone

conformation, and a Metropolis criterion [39] with temperature T is used to
accept/reject moves. In addition to backbone moves, the internal states of
the monomers must be evolved. After each backbone move is attempted, we
attempt n−1 internal state moves. At each such move, a random monomer is
chosen. If the monomer is making more than c contacts with other monomers,
its internal state is not allowed to change. Otherwise, its internal state is ran-
domly flipped to one of the other n − 1 states, the change in energy of the
conformation is computed, and the move is accepted/rejected based on the
Metropolis criterion. The parameter c can take the values 0 through 4. When
c = 4, internal states can interchange freely and are not affected by the con-
formation of the backbone. If c = 0, internal states can interchange only if the
monomer makes no contacts. In this study we take c = 0 throughout. Folding
simulations are started from random backbone conformations generated by
an infinite temperature simulation. The internal state of each monomer is
initialized randomly.

All-Atom Protein Folding Simulations. The all-atom Monte Carlo simu-
lation previously described [25] was used to fold protein G (pdb code: 1IGD).
By representing all sidechain and backbone heavy atoms as hard spheres, the
protein was simulated as a polymer with excluded volume interactions, where
chain crossings are strictly prohibited. For the D46A mutant [14], the energy
of a conformation was computed as E = EG +Eh, where (1) the atom-atom
Gō energy EG =

∑
C(A,B)Δ(A,B), with Δ(A,B) = 1 if the heavy atoms

A and B were in contact and zero otherwise, C(A,B) was -1 if A and B were
in contact in the native conformation, 1 if they were not, and∞ if they were
sterically clashed and (2) the backbone hydrogen bonding energy Eh = Nhh,
where Nh corresponds to the number of amide N-carbonyl O pairs in con-
tact. h was chosen to be -0.6 in order to match experimental stabilities of the
protein G helix and hairpins taken in isolation.
The torsional move set ensures that canonical bond lengths and geome-

tries (including planar peptide bonds) are maintained throughout the entire
simulation. Backbone and sidechain moves consisted of concerted random ro-
tations of backbone φ/ψ and sidechain χ angles, respectively. 10 sidechain
moves were completed for each backbone move in order to allow sufficient
relaxation of sidechain geometries after a change in the backbone topology.
50 folding simulations were initiated from random coil conformations, ob-

tained by simulating the mutant native state with only the excluded volume
interaction turned on. The temperature was then quenched to T=1.575 and
the chain was allowed to equilibrate for 2× 109 MC steps, where 1 MC step
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consisted of 1 backbone and 10 sidechain moves. Given the experimentally
measured transition temperature of 360K and our simulation transition tem-
perature of 1.95, T=1.575 corresponds to an actual temperature of ≈ 290 K.
From the 50 trajectories of the mutant protein G, we estimated the prob-

ability to fold [40] (pfold) of conformations observed just prior to reaching the
native state, by counting the number of times the native state was attained
from the selected conformation in 20 separate runs of 10× 106 MC steps.
Fitting of Residue Relaxation Curves. After collecting many long runs,
we averaged the internal sidechain state of each monomer at each time step
over all runs, assigning 1 if the residue was native, and 0 otherwise. For
lattice simulations, 130 runs were used, and a two-state exponential fit of
the form f(x) = a0 + a1 exp(−a2t) was very good for all residues. For all-
atom simulations, 50 runs were used, and averaging over runs was performed
by assigning 1 to each residue whose χ-angles were all within 60◦ of the
native angles, and 0 otherwise. A value of 1 thus corresponded to observing
the native rotamer. Fits to a three-state model were performed as described
in Results. All fits were done using the nonlinear least-squares Marquardt-
Levenberg algorithm.
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2.1 Introduction

Experimental work on complex condensed matter can address a broad range
of temporal and spatial scales, from femtosecond dynamics and atomistic de-
tail to real-time macroscopic phenomena. Simulation methods in which each
atom is explicitly represented are well established but have difficulty address-
ing many cooperative effects of experimental and theoretical interest. There
is simply too large a gap between the time and spatial scales that govern typ-
ical intramolecular events and those which are relevant for collective motions.
One example is the spatial rearrangement of membrane species such as occur
in the formation of a lipid raft [1] or membrane fusion. Available simulation
techniques for specific time and spatial scales are illustrated schematically in
Fig. 2.1. These techniques take a variety of approaches to reduce the level
of detail in the representation of the system under study as the time and/or
length scales grow. This will be discussed further in Sect. 2.3. Bridging these
disparate scales is possible with multiscale modeling [2,3,4] in which the var-
ious levels of treatment are coupled and fed back into one another.
Possibly the least developed of these techniques are the ones aimed at

studying events which are intermediate between the fully atomistic scale
and mesoscale. Namely, events which occur on time scales of hundreds of
nanoseconds to milliseconds and spatial scales of microns. Modern optical
techniques [5] routinely access precisely these time and spatial scales. Dynam-
ics occurring on time scales of nanoseconds and slower can be investigated
with many different experimental methods, including nuclear magnetic res-
onance (NMR) spectroscopy and time-resolved X-ray diffraction. Flow cells
combined with small angle X-ray scattering (SAXS) can access millisecond
time scales. Spatial scales of 1 nm to 1 μm are accessably with small angle
neutron scattering (SANS) and SAXS, and resolution of 20-25 Å is accessible
from cyroelectron microscopy. From a theoretical point of view some phe-
nomena in this domain can be addressed with Ginzburg-Landau, and other,
expansions of the free energy [6,7,8,9,10,11,12,13,14,15,16,17]. In this chapter
we present a simulation method that has ready access to events on these scales
and which furthermore retains much of the specificity of atomistic models. In
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Fig. 2.1. Schematic of temporal and spatial scales accessible by simulation tech-
niques. Also indicated are some characteristic membrane structures and events.

addition, explicitly dynamical events can be studied with simulations using
molecular dynamics.

2.2 Challenges

There are many phenomena that lie within the mesoscopic spatio-temporal
scale which may eventually be explored with coarse grain (CG) methods.
In a biological context, examples of such phenomena are protein-protein in-
teractions, lipid-protein interactions, and membrane-membrane interactions.
Events that fall under these categories include membrane protein crystalliza-
tion, membrane fusion, and transbilayer lipid diffusion. These are discussed
below.
To understand the biological function of lipids, their physical proper-

ties must be studied in the context of membranes composed of lipid/protein
mixtures. Membrane lipid composition varies widely over different organelle
membranes, within a single membrane, and even across leaflets of the same bi-
layer membrane. These differences in membrane composition range through-
out the whole spectrum of living organisms from protozoans to higher or-
ganisms such as mammals. For example, the transbilayer lipid distribution
is symmetrical in the endoplasmic reticulum of mammalian cells, while it is
markedly asymmetrical in the plasma membrane [18]. In the plasma mem-
brane the majority of sphingolipids are found in the outer leaflet while most
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of the phosphatidylserine and phosphatidylethanolamine lipids are found in
the cytosolic leaflet. Local variations in the physical properties of bilayers
allow for membrane deformation and facilitate vesicle budding and fusion.
Proteins can also stimulate lipid exchange between membranes by bringing
them into contact. Leaflet flips can occur by the action of protein flippases,
which are thought [18] to drive vesicle budding from the plasma membrane by
transferring lipids from the cytosolic to the outer leaflet. An understanding
of these processes at a mesoscopic or atomic level is currently lacking.
The interaction between membranes can be accounted for by the van der

Waals and electric double-layer forces which comprise the Derjaguin Landau
Verwey Overbeek (DVLO) theory of colloid science and by the entropic forces
due to the overlap of thermally excited surface modes [7]. Recent results [20]
show that the concept of elastic deformation is relevant on lengths compara-
ble to and even less than the bilayer thickness, involving a broad spectrum
of collective modes which contribute to the forces between lipid bilayers. X-
ray diffraction [21] analysis of bilayers subjected to known osmotic pressures
provide information on the magnitude of both repulsive and attractive forces
that exist between phospholipid and glycolipid membranes. Atomic force mi-
croscopy [22] is also a useful probe of repulsive forces. The presence of a stiff
transmembrane peptide can alter the spectrum of thermally excited modes
which can in turn alter the entropic forces between membranes. In Sect. 2.4.1
coarse grain (CG) and united atom simulation results [25,26,27] on membrane
fluctuation modes will be presented.
It has been proposed [18] that lipid domains of different hydrophobic

thickness and composition can aid membrane protein localization, and can
influence membrane protein function. In higher organisms, membrane pro-
teins that are destined for the plasma membrane are separated from Golgi
proteins based on the length of their transmembane domains. These proteins
can also be chemically sorted using address labels on their cytosolic tails to
interact with a protein coat. It is clear that hydrophobic matching between
the protein and its matrix is essential for protein function; this concept will
be discussed in detail in Sects. 2.4.4 and 2.4.5.
Membrane protein crystallization is clearly a topic that needs a better

theoretical understanding. The paucity of membrane proteins in the Pro-
tein Data Bank compared to soluble proteins reflects such a need. What is
known is that bulk lipid phases and the transitions between them play a
central role [19]. After protein solubilization and reconstitution in a known
lipid (typically monoolein), the protein is incorporated into an inverse cubic
or inverse hexagonal phase of the lipid/water mixture. The next step in crys-
tallization is to add salt to dehydrate the water pores and provide charge
screening. This dehydration can trigger either crystallization of the protein
or co-crystallization of the protein with bound lipid. In Sect. 2.4.5 we will
present results in which a peptide is able to induce a phase transition from a
lipid lamellar bilayer phase to an inverse cubic phase.
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Viral structures provide outstanding examples of macromolecular assem-
bly and function. Structural information is obtained mainly through the use
of NMR, X-ray crystallography, and electron cryomicroscopy. However, the
NMR and crystallographic techniques often provide a view of the system far
removed from its physiologically active conditions. For example, some re-
gions that are deeply buried in the X-ray structure must be exposed for virus
particle interaction with the cell membrane during the process of viral infec-
tion of host cells [28,29]. Infection mechanism theories are difficult to assess
from such data. On the other hand, atomistic simulations of the interactions
between viruses and host cells (or even viruses and antiviral drugs) are pro-
hibitively expensive even for the smallest viruses. There is a clear need for
dynamical mesoscale simulation studies of such systems.
Another example where there is a need for an understanding of the dy-

namics and structure at the mesoscale level involves ion channels. The nico-
tinic acetylcholine receptor is a 268 kilodalton pentameric ion channel in
which each subunit has four hydrophobic segments called M1–M4. The M2
segments are known to line the interior of the channel, and have been the
subject of simulations isolated from their remaining M1, M3, and M4 protein
parts [32,33]. A more complete description of the system, and one that would
benefit fields ranging from drug design to infection control, would be to in-
clude all the atoms of the M2 segments and the pore water molecules, and
to model the remaining segments (M1, M3, and M4), the membrane lipids,
and the water solvent in a CG manner.
Finally, disparate time scales may be accessed by mixing levels of descrip-

tion in the same simulation. This is being done for mixed quantum/classical
systems by QM/MM methods [30] and non-adiabatic surface hopping meth-
ods [31]. In the context of the present CG method, the force field could be
adapted to embed an all-atom region inside a CG region as described above.
In this chapter we focus on the development and application of a CG model
that can be used for either Monte Carlo (MC) or conservative molecular dy-
namics (MD) simulations. We begin with an overview of existing simulation
techniques which access time and length scales intermediate between atom-
istic and mesoscale. We then provide the methodological details of the current
CG method. Next, we look at a few situations in which theoretical predic-
tions can be examined by CG simulation methods, and at several situations
in which the CG method goes beyond current theoretical and experimental
reach to shed some light on novel dynamical phenomena. Lastly, we give some
perspectives on future direction for research using CG models.

2.3 Models

2.3.1 Previous Work

There are many approaches in the literature for increasing the efficiency of
fully atomistic simulations [34]. These methods fall into three general classes,
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namely Monte Carlo, conservative dynamics, and dissipative dynamics. Con-
servative evolution is numerically unstable and thus a small time step must
be employed. The time step used is determined by the stiffest potentials in
the system. The highest frequency motions are typically bond vibrations in-
volving hydrogen. Since these fast motions are approximately decoupled from
the rest of the system, they undergo many oscillations on the time scale of
the remainder of the system. Hence their interaction with the remainder of
the system is roughly governed by their average location, which is at the
equilibrium bond length. There are algorithms, such as shake and rattle,
which constrain these high frequency bonds to remain fixed at their equi-
librium extensions, thereby eliminating the stiffest motions and allowing the
time step to be increased. Another common procedure to eliminate the stiff
bond motion involving hydrogen is to lump hydrogen atoms together with
their associated heavy atom into a single united atom site. If only static in-
formation is desired, the high frequency motions involving hydrogen can be
reduced by artificially increasing the hydrogen atomic mass. Increasing the
hydrogen mass by a factor of ten allows for the time step to be increased by
about a factor of three.
The numerical instability inherent to conservative dynamics can be miti-

gated by adding dissipative terms to the system. One of the common proce-
dures (known as the Lax method [35]) to stabilize a flux-conservative partial
differential equation is to add a dissipative term. Moreover, methods have
been developed in the simulation community which stabilize long time step
integrators for Newtonian molecular dynamics by using very mild stochastic
damping [36]. Dissipation can be accounted for with the Zwanzig-Mori pro-
jection operator formalism, which provides an exact procedure for eliminating
unimportant variables from the system under study. This method leads to
the generalized Langevin equation in which the total force acting on the par-
ticles of interest is composed of a colored noise term and a non-Markovian
dissipative term containing a memory function satisfying the fluctuation-
dissipation theorem [37]. Approximating the memory function with a delta
function yields Brownian dynamics, which has been applied in studying self-
assembly of amphiphiles into vesicles [38] and potassium channels [39].
The solvent is a good candidate for a less detailed treatment because it

often plays a spectator role, it accounts for a sizable fraction of the system,
and, especially due to the electrostatics of most water models, is very time
consuming to treat in full detail. ten Wolde and Chandler [40] use a coarse
grain Ising-like treatment of water to study hydrophobic polymer collapse.
An exciting development by Malevanets and Kapral [41] treats the solute-
solute and solute-solvent dynamics microscopically, while the solvent-solvent
dynamics is treated in a mesoscale manner through multiparticle collisions
which are hydrodynamically consistent. This method has been implemented
for atomic solvents and will hopefully be generalized to the molecular case.
The solvent can also be accounted for in an implicit manner. Continuum
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electrostatic models treat the solute as a low-dielectric cavity embedded in
a high-dielectric medium representing the solvent. The Poisson or Poisson-
Boltzmann equation is then solved numerically using either finite-difference
or boundary element methods. If these numerical methods are too costly,
approximations can be used such as the generalized Born approach [42].
Flekkøy and Coveney [43] introduce a procedure for deriving a coarse-

grained dissipative particle dynamics (DPD) from MD. This is the first work
to link DPD to the underlying microscopic dynamics. In DPD the forces be-
tween particles have fluctuating, dissipative, and conservative components.
Momentum and mass conservation are imposed to produce hydrodynamical
behavior at the macroscopic level. The parametrization method of Groot and
Rabone [44] only requires the correct compressibilities and the correct solu-
bilities of the various components into each other. These mutual solubilities
are specified with Flory-Huggins χ-parameters.
The protein-folding community has long been interested in CG models

to increase the efficiency of protein-structure predictions. Typically amino-
acid residues are represented by one or two interaction sites, and the peptide
backbone unit is represented as a single site [45,46]. The force field is pa-
rameterized from radial distribution functions computed from the Protein
Data Bank (PDB). It seems at first that this data has little importance for
determining potentials along folding pathways, and in particular for starting
with unfolded sequences. But in fact even though the entire protein is in
its folded state in the PDB archive, a particular short amino acid sequence
appears in many structures in very different conformations, so that short se-
quences should be sampled in roughly a Boltzmann distribution across all
structures [46].
Several of the methods discussed above are MC methods or can readily

be adapted to a MC framework. However, current effort in MC is focused as
much on improving the sampling efficiency as reducing the level of descrip-
tion. Sampling is enhanced by either using new ensembles and move sets [47]
or by coupling individual MC chains to form a composite chain [48], as is
done with simulated annealing and parallel tempering algorithms [49] .

2.3.2 Towards the Current CG Model

We now focus on methods and considerations closely related to the CG model
that we will develop in the following section. A common motif employed
by many simulation methods is to lump groups of atoms together into a
CG interaction site. We give as examples the CG model of Fukunaga [50],
the DPD model of Groot and Rabone [44], and the multiscale method of
Goddard [4].
It is important not to overly distort the geometrical shape of the molecules

when doing this grouping. As an illustrative example, for amphiphilic molecu-
les the head group size compared to the average tail size normal to its length
determines whether micelles or inverse micelles are preferred. Cone shaped
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molecules like phosphatidylethanolamine have small head groups and tend to
form inverse micelles. Inverted cone shaped molecules like lysophosphatidyl-
choline tend to form micelles. Some CG models use anisotropic interaction
sites to capture the underlying shape. One of the simplest anisotropic po-
tentials is the Gay-Berne potential which is commonly used in liquid crystal
simulations. The Gay-Berne sites are ellipsoids of revolution and their in-
teraction potential has four parameters; the center of mass separation and
three angles used to describe the relative orientation of the ellipsoids. It has
been used in a lipid CG model [51] and in a united-residue protein folding
model [45].
There is an additional consideration to take into account when deciding

on the CG grouping, namely electrostatic partial charges. All-atom MD force
fields typically have atom-centered partial charges to capture the electron-
withdrawing capabilities of certain functional groups. Lumping atoms to-
gether into a single interaction site imbues that site with a partial charge
which is the sum of all its constituent atomic charges. If it is felt that some
regions of charge should remain in the CG model the interaction sites may
have to be reduced in size or have their composition altered. One possibility
is to associate several fictitious charges with an interaction site so as to repro-
duce the correct long range electrostatics. As an example of this we mention
the peptide backbone structure. The peptide backbone partial charges give
an α-helix its net dipole moment and its hydrogen bonding network. The
backbone unit could be modeled as the electrically neutral -CαH-CO-NH-
site (possibly with two fictitious charges) or as two sites, -CO- and -NH-
CαH-, with equal positive and negative partial charges. The protein folding
community often uses a single, uncharged site [45,46]. An alternative is to
use a multipole expansion to capture the effect of an anisotropic charge dis-
tribution.
After selecting the interaction sites the bonded and non-bonded poten-

tials which couple them must be determined. Short atomistic simulations can
be used to attempt to include fine scale detail in a statistical manner. This
is done by appealing to reverse MC simulation techniques [52,53] to implic-
itly capture fine structure. For example, the aqueous solvent shell structure
around ionic or zwitterionic species involves a complicated hydrogen bonding
network. Both all-atom MD [54] and experiments [55] show that zwitterionic
phospholipid head groups and water together form such a network. The CG
model cannot directly capture this network, but nonetheless the interfacial
structure needs to be accounted for in order to arrive at a reasonable model.
One such CG method which captures fine detail is due to Fukunaga [50].

The bond and bend potentials are determined by taking the logarithm of the
corresponding canonical distribution functions calculated from atomistic sim-
ulations. This requires that one forego simple functional forms for these po-
tentials. The non-bonded potentials are also derived from atomistic canonical
distributions. Since the canonical distributions are for a constant temperature
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ensemble simulation, the derived potentials are specific to that temperature.
Fukunaga [50] parametrizes for a range of temperatures by running separate
atomistic simulations.
An iterative method is presented in a seminal paper by Lyubartsev and

Laaksonen [52], who show how to derive effective interaction potentials from
all-atom simulations to capture ion solvation shell structure in an implicit
manner without including any solvent in the reduced system. This is done by
adjusting the CG ion-ion interaction potentials to match the all-atom ion-
ion radial distribution functions from the atomistic simulation. The resulting
effective potential has a complicated shape which is tabulated on a grid.
This parameter adjustment to match atomistic data warrants attention

because it is difficult and time-consuming. In principle all of the parameters
are coupled, so that adjusting any one of them is not an isolated act. The
optimization space is hence of high dimension. The effect of the parameter
adjustment must be appraised by simulating the CG system firstly to bring
it to equilibrium with the updated parameter set and secondly to compute
canonical averages. Furthermore, it is not obvious how to relate the change
in input parameters to the change in output observables (to compute the
gradients).
Although non-gradient optimization methods exist in the simulation lite-

rature [56], they work by estimating the gradient using repeated function
evaluation. This is not feasible in the present context because of the cost of
function evaluation. A gradient based optimization method [52] derived from
statistical mechanics can be used to compute the full matrix of first partial
derivatives, which relate the changes in input parameters to the changes in
observables, from a single simulation. This method is presented in Sect. 2.3.3.
In the aqueous sodium chloride system studied by Lyubartsev and Laak-

sonen [52], a 200 point grid was used for each of the Na-Na, Cl-Cl, and Na-Cl
interaction potentials, giving a fully coupled 600 by 600 matrix equation.
This in turn means that 600 parameters are used to define the tabulated
potentials. Optimization problems of this size are trivial to solve using the
gradient method since they simply involve inverting a matrix. On the other
hand, this problem is impossible to do with non-gradient methods, since
360 000 separate simulations would have to be performed to estimate the
gradients.

2.3.3 A First Attempt

Water and Hydrocarbon. Parametrization of all-atom and united atom
classical MD force fields is a highly developed area of study. These force fields
are typically parameterized from a combination of experimental observables
and quantum calculations. The present CG model uses these force fields and
experimental observables as the raw data against which to fit.
We choose isotropic sites for computational simplicity and to keep the

force field in a format that is easily implemented by standard MD codes.



2 A Coarse Grain Model for Lipid Monolayer and Bilayer Studies 35

These sites must hence be small enough to not grossly distort molecular
shape.
For aqueous amphiphilic systems we have adopted a hierarchical approach

which we will now describe. This approach is quite general in nature and
could easily be adapted to other systems. We begin with water. Actually, the
treatment of water in the present model is somewhat complicated because
water molecules are accounted for both implicitly and explicitly as will be
described below. We only discuss the explicit representation here. With a
Langmuir monolayer in mind we desire the CG water to be able to maintain
a subcritical interface. Since we will, on average, be grouping about 10 atoms
together to form CG units, we choose to represent a loose grouping of three
water molecules as a single CG site. With no internal structure and no elec-
trostatic partial charges, we need only specify the intermolecular potential to
complete the CG water model. CG interaction sites always have softer po-
tentials than their all-atom counterparts because the constituent atomic sites
become smeared out under the spherical (isotropic) averaging. We choose a
Lennard-Jones 6-4 potential [57] for this reason. With two (Lennard-Jones)
intermolecular parameters we can at best hope to match two target observ-
ables. Grand canonical MC is used to optimize the two parameters to match
the experimental bulk density and vapor pressure of water at room temper-
ature.
We next consider hydrocarbons. These may be branched and/or unsatu-

rated. We usually represent three consecutive carbon atoms and their respec-
tive hydrogens as a single site. Sites are connected by harmonic bond and
bend potentials. The bond and bend force constants and equilibrium values
are chosen so that the bond and bend distributions best match those of the
corresponding all-atom simulation. The comparison can be made by grouping
the all-atom data to correspond to the CG sites.
We now establish the change in bond distribution moments caused by a

change in the bond parameters (force constant and equilibrium value). This
relation allows for the parameter adjustment to be made optimally to first
order. We assume the Hamiltonian

H =
P 2

2M
+ V (R; a) (2.1)

depends upon a parameter a, where the first term in Eq. (2.1) is the kinetic
energy of the system and the second term is the potential energy. For the
observable A ≡ A(R) depending only on the coordinates, its expectation
value in the canonical ensemble is given by

〈A〉 =
∫
dRAe−βH

∫
dRe−βH

(2.2)
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where β is the inverse of the product of Boltzmann’s constant and the tem-
perature, so that

∂〈A〉
∂a

= −β
[〈

A
∂H

∂a

〉

− 〈A〉
〈
∂H

∂a

〉]

(2.3)

This is the fundamental relation which links the change in input parame-
ter to the change in output observable. We will now illustrate the gradient
method with the simplest example: parameterizing an intra-molecular har-
monic bond potential in the canonical ensemble. A harmonic potential has
two parameters. We choose as our two observables the mean and standard
deviation of the bond length, which can be obtained from the quantities 〈r〉
and 〈r2〉 where the angle brackets are with respect to the canonical ensemble.
We write

V =
∑

ij

′fαβ

(∣
∣
∣qαi − qβj

∣
∣
∣
)
+ V ′ (2.4)

where the prime on the sum denotes that the {i, j} pair in question must
be joined with a bond. The bond we are considering is between species α
and β. V ′ represents all the other intra-molecular and all the inter-molecular
potential energy terms in the Hamiltonian, and

fαβ(r) =
kαβ

2
(
r − rαβ

eq

)2
(2.5)

is the harmonic potential. With our two parameters being k and req and our
two observables being the mean and standard deviation of the bond length,
we need

∂〈rαβ〉
∂rαβ

eq

and
∂
√
〈r2αβ〉 − 〈rαβ〉2
∂kαβ

(2.6)

as the diagonal elements in the matrix of first partials. There must be a clear
match between observables and parameters on the diagonal of this matrix
for the method to work effectively. We could, for instance, have chosen to
use the mean squared bond length instead of the standard deviation, but the
mean squared length and the stiffness k are not obviously related. If we were
using derivatives of arbitrarily high order this would not matter, but the
truncation to linear order makes these choices inequivalent. The standard
deviation expression of (2.6) must be expanded into terms involving 〈rαβ〉
and 〈r2αβ〉, and then (2.3) used with A = rαβ and A = r2αβ . The ∂H/∂a term
in (2.3) is just ∂fαβ/∂r

αβ
eq and ∂fαβ/∂kαβ with f given in (2.5).

No torsional potentials are implemented for the hydrocarbon model. Sat-
urated straight chain hydrocarbons are quite floppy; the torsional angle dis-
tribution over four CG sites would be featureless. If the branching and un-
saturation in particular cases warrants including a torsional potential this



2 A Coarse Grain Model for Lipid Monolayer and Bilayer Studies 37

could be done. The non-bonded potential is expected to be soft and roughly
the same for different hydrocarbons. We take it to be a Lennard-Jones 9-6
potential. The well depth and contact distance are adjusted so as to repro-
duce the experimentally determined vapor pressure and bulk density at room
temperature for a few typical bulk alkane systems.
The systematic adjustment of the parameters is not easily done for the

grand canonical MC simulations, although the small number of free param-
eters keeps the problem from becoming too unwieldy. The difficulty is that
the partial derivative of the observable (eg. vapor pressure) with respect to
an adjustable parameter (eg. Lennard-Jones well depth) is difficult to de-
rive. The iterative parameter refinement must therefore be done either with
simplex optimization [56] or by trial and error.
Once the pure water and pure hydrocarbon systems have been parame-

terized, these parameters can be used in more complicated systems without
being subject to further modification. This reduces the number of free param-
eters in complex systems. In this spirit, we obtain one more set of parameters:
the hydrocarbon-water interaction potential. Towards this end hydrocarbon-
water CG systems are simulated. The interaction potentials are chosen to be
of Lennard-Jones 9-6 type and the parameters are selected to obtain phase
separation and reasonable width for the hydrocarbon-water interface [57].

Amphiphilic Systems. We are now ready to parametrize an aqueous am-
phiphile system. We will focus on the phospholipid dimyristoylphosphatidyl-
choline (DMPC), but the strategy used can be applied to other systems. The
DMPC molecule is coarse grained using 13 sites to represent the 118 atoms
as shown in Fig. 2.2. An all-atom simulation [58] of an equilibrated DMPC
bilayer in the Lα phase is used to parametrize the CG model. The CG system
that we will calibrate is also prepared as a bilayer so that we are treating the
same thermodynamic phase. The intra-molecular force field is parametrized
with harmonic functions by matching bond and bend distributions with the
corresponding distributions from the all-atom simulation. The acyl tails of
the DMPC lipid are straight alkane chains and the non-bonded parameters
for the tail units interacting with other tail units or water are taken from the
already determined hydrocarbon-water parameters.
The lipid head groups are coarse grained into a positively charged choline

site, a negatively charged phosphate site, a glycerol site, and two ester sites
which have the two acyl tails attached to them (see Fig. 2.2). All combinations
of non-bonded pairwise interactions among these head groups are modeled
with tabulated effective potentials which aim to reproduce the radial distri-
bution functions from the appropriately grouped all-atom simulation data
(see Fig. 2.3 for examples of such effective pair potentials). These head group
– head group interactions implicitly include water solvation shell structure.
However, matters are not as straightforward as in the implicit solvent model
of Lyubartsev and Laaksonen [52] because our solvent is also present explic-
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Fig. 2.2. Thirteen site model of DMPC (also denoted as DC14PC). The choline
and phosphate sites carry positive and negative electrostatic charges, respectively,
of equal magnitude. The all-atom version is also shown.
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Fig. 2.3. Examples of non-bonded, tabulated, potentials in the CG force field for
hydrated DMPC lipid. In thin solid line is the choline/phosphate potential, in
thick solid line the choline/choline potential, and in thick broken line the phos-
phate/phosphate potential. The line of zero potential is drawn to guide the eye.

itly. The explicit water serves as a momentum carrier (in MD simulations)
and is desirable for dynamical studies. Furthermore, the Lennard-Jones na-
ture of the potential for the explicit water site has an attractive well region
which allows it to maintain an interface. Nonetheless, the parameterization
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strategy is unchanged: the tabulated potential attempts to mimic the all-atom
reference radial distribution function in the fully interacting CG system. This
means that the magnitude of the tabulated potentials are reduced compared
to the case when no explicit solvent is present.
By using a tabulated potential each grid point is taken to be a free pa-

rameter, so that the number of parameters is large. We now show how to
account for all the parameters and the coupling between them with the gra-
dient method of Lyubartsev and Laaksonen [52]. We write

V =
∑
Vαβ

(∣
∣
∣qαi − qβj

∣
∣
∣
)
+ V ′ (2.7)

where Vαβ is the non-bonded (non-electrostatic) potential between sites α
and β and V ′ represents all the other potential energy terms. We choose to
write

Vαβ

(∣
∣
∣qαi − qβj

∣
∣
∣
)
=
∫ ∞

0
drVαβ(r)δ

(
r −
∣
∣
∣qαi − qβj

∣
∣
∣
)

(2.8)

where δ is the Dirac delta function, and define [52]

Sαβ(r) =
∑

ij

δ
(
r −
∣
∣
∣qαi − qβj

∣
∣
∣
)

(2.9)

Note that

〈Sαβ(r)〉 = gαβ(r)4πr2 (2.10)

where g(r) is the radial distribution function which we choose as our observ-
able. We can now write

Vαβ =
∑

αβ

∫ ∞

0
drVαβ(r)Sαβ(r) (2.11)

which allows us to link the observable gαβ(r) with the parameter Vαβ(r). We
have

∂〈Sαβ(r0)〉
∂Vγξ(r1)

= −β [〈Sαβ(r0)Sγξ(r1)〉 − 〈Sαβ(r0)〉 〈Sγξ(r1)〉] (2.12)

since it turns out that ∂H/∂Vγξ(r) = Sγξ(r)
The following set of coupled linear equations is solved for ΔV = V old −

V new,

〈Sαβ(r0)〉 − 〈S∗αβ(r0)〉 =
∑

γ,ξ,r1

∂〈Sαβ(r0)〉
∂Vγξ(r1)

ΔVγξ(r1) (2.13)

where 〈S∗(r)〉 = g∗(r)4πr2 is the observable from the atomistic simulation
which is our target. The r values in practice are defined on a regular grid.
The matrix of derivatives needs to be inverted to obtain the solution.
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For the isothermal-isobaric ensemble the partition function has an ad-
ditional factor of

∫
dV e−βPV and the above analysis follows through in a

completely analogous fashion [59].
The observables selected to correspond to parameters (namely, the diago-

nal entries in the matrix of first partial derivatives) should be simple enough
to evaluate the derivatives explicitly. One example which would be harder to
handle would be the use of c, the Ornstein-Zernike direct correlation func-
tion, instead of the full correlation function h ≡ g−1. The advantage of using
the direct correlation function to parameterize a non-bonded pair interaction
is that it avoids the ambiguity having oscillations in the tails of the vari-
ous interaction potentials which cancel each other out (and hence need not
exist). The full correlation function is conceptually and pragmatically diffi-
cult to relate to the effective non-bonded potential because of many-body
effects [50].
The lipid head group non-bonded interaction with both hydrocarbon and

water is taken to be of Lennard-Jones form and parametrized so as to roughly
match the integrated radial distribution function (in the bilayer configura-
tion) of the two species in question out to a few selected distances [57]. This
simple functional form is chosen because these interactions are of lesser im-
portance and we only attempt to roughly capture them.
Some of the parameterization strategy just described builds specific Lα

bilayer structure directly into the force field. Furthermore the derived force
field is only valid for a small temperature range as discussed in Sect. 2.3.1.
This is part of the tradeoff in moving to a more efficient simulation method;
generality is sacrificed. However, the situation is not as limiting as it first ap-
pears. Only the lipid head group – head group interaction potentials contain
explicit bilayer information since these were the only potentials that were
tabulated to reproduce the thermodynamic phase-specific atomistic radial
distribution function data. The rest of the interaction potentials are quite
general. Furthermore, the enthalpic lipid tail and entropic changes which oc-
cur when the lipid/water system is in a different phase can partially override
the structure inherent in the non-bonded potentials. Ongoing studies using
this Lα bilayer derived force field include Langmuir monolayers and inverse
hexagonal phases [60]; the results (eg. the surface tension of Langmuir mono-
layers) are encouraging and agree semi-quantitatively with experiments.

Efficiency over All-Atom MD. Work on the current CG model began by
using MC as the sampling technique with a simple move set [57,61]. Large
scale organization and healing were observed to be slow. For example, inverse
hexagonal self-assembly did not show global structure over the MC simulation
run, and defects in the self-assembly of a lipid bilayer (see Sect. 2.4.3 for
more discussion) did not heal over the length of the simulation [61]. This
problem would be alleviated by using a more sophisticated MC move set.
Instead, MD was appraised as an alternative simulation technique. The use
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of MD was observed to be very efficient. Besides the cooperative global moves
which occur naturally in MD, the explicit water particles act as momentum
carriers and allows for material to flow in the system in a hydrodynamically
consistent manner that aids global rearrangements. The efficiency of the CG
MD method over all-atom MD will now be described.
The softer interaction potentials allow the use of a one order of magni-

tude larger propagation time-step. The reduced number of interaction sites
and potentials between them yield another two orders of magnitude speedup.
In the case of DMPC [57], the CG model consists of 13 sites and 24 internal
potentials (12 bonds and 12 bends). The all-atom charmm DMPC encom-
passes 118 atoms and 971 internal potentials (117 bonds, 226 bends, 315
torsions, and 313 one-fours). A further two orders of magnitude efficiency
gain comes from enhanced diffusion of the lipid species, for example in the
plane of a bilayer or Langmuir monolayer. This is a result of the soft inter-
action potentials and the lack of an explicit hydrogen bonding network at
the interface between lipid head groups and water. We have quantified this
diffusional speedup [62,63] as follows. The two dimensional diffusion constant
for Lα phase DMPC in the plane of the bilayer is 6.5 × 10−8 cm2/s for an
all-atom simulation and 6.3 × 10−6 cm2/s for the CG model.
A drawback to the use of MD, however, is the use of effective potentials,

which are related to potentials of mean force. A memory kernel should be used
to properly implement the dynamics [52]. We do not use memory functions,
but we do extract translational and rotational diffusion constants [62,63] for
CG lipid monolayers and bilayers and compare these with all-atom results to
quantify the ordering of relaxational time scales.

2.4 Applications

We begin by discussing some recent simulation work which is motivated by ex-
perimental and theoretical results on entropic forces in amphiphilic systems.
We then proceed to illustrate the range of applicability of the current CG
method by presenting some recent results. These results include amphiphile
self-assembly, transmembrane peptide induced domain segregation and phase
transitions to inverted phases, and instabilities in Langmuir monolayers.

2.4.1 Fluctuation Modes

The forces between fluid amphiphilic surfaces arise from both entropic and
enthalpic factors. The enthalpic contributions arise from the two forces which
comprise the Derjaguin Landau Verwey Overbeek (DVLO) theory of colloid
science. These are the attractive van der Waals and repulsive electric double-
layer forces, the later being present only for charged amphiphiles. The en-
tropic contributions [7] are repulsive and arise from the overlap of thermally
excited surface modes. Two of these are the undulatory and peristaltic (or
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squeezing) modes. These two modes are most easily visualized in the case of
a hydrated bilayer. By locally orienting the bilayer to lie in the xy plane, the
position of the two bilayer leaflets at a particular xy location can be taken
to be h� and hu (e.g. these locations could be the center of mass of the head
groups or the center of mass of the amphiphiles). The undulatory mode is
given by the fluctuations in h�+hu while the peristaltic mode is given by the
fluctuations in h� − hu as a function of x and y. For uncharged amphiphiles
the dominant interactions between amphiphilic surfaces at distances greater
than 1 nm are due to the repulsive undulatory and attractive van der Waals
forces [10]. Both scale as the inverse cubic distance between surfaces. The
van der Waals pressure scales as [7]

PvdW ∝ − A

6πD3 (2.14)

where A is a constant and D is the separation between surfaces. The undu-
latory pressure scales as [10]

Pund ∝ 1
β2KbD3 (2.15)

where Kb is the elastic bending modulus. We will focus on uncharged am-
phiphiles for the remainder of this section, but wish to point out that recent
simulation work [64] has obtained results which differ qualitatively from the
electrostatic predictions of DVLO theory. Moreover, it is thought [7] that
electrostatic charges suppress undulatory and other fluctuations.
Simulations are beginning to evaluate the validity of these scaling pre-

dictions at the microscopic level. However, recent work has focused on the
thermal fluctuations within a single surface. The best known example of
these intra-surface fluctuations are capillary waves [23], which in interfacial
monolayers are predicted to broaden the interface width σ due to thermal
excitations as

σ2 =
1

β4π2γ

∫ ∞

0
dq

q

q2 + κ2
(2.16)

where q is the wavenumber, γ is the surface tension, and κ accounts for the
presence of the gravitational field. This expression diverges logarithmically
with system size and an upper cutoff must be invoked. Typically this cutoff is
taken to be the bulk correlation length of the liquid. Logarithmic divergence
is weak; for a typical system [6], a surface of extent L = 100 Å has a root
mean square (rms) fluctuation of about 1.5 Å, while one with L = 1 cm has
an rms fluctuation of only about 7.5 Å.
Since the capillary fluctuations are small, simulations have studied lipid

bilayers in the lamellar phase, where the fluctuations are more pronounced.
In this case the main entropic fluctuation force is due to the bending of
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the bilayer. The mean-square height fluctuation grows algebraically with the
system size [6]

σ2 ∝ T
Kb
L2 (2.17)

where T is the temperature, Kb is the bending modulus of the bilayer, and
L is the planar spatial extent of the system. This prediction of much faster
divergence is accessible to and has been tested by the simulation community
using both CG and united atom models [25,26,27]. The elegant study of Mar-
rink [26] examines the role of lateral tension on the undulations which has also
been addressed experimentally [65]. In addition to bending fluctuations, bi-
layers undergo peristaltic fluctuations. The simulations of Marrink [26] clearly
show the expected long-wavelength suppression of the peristaltic modes since
these fluctuations cannot exceed the mean width of the bilayer.

2.4.2 Bulk Alkane and Water Surface Tension

The CG water and hydrocarbon non-bonded parameters were determined on
the basis of experimental bulk density and vapor pressure data as described
in Sect. 2.3.3. How accurately do these compounds reproduce experimental
surface tensions at the liquid/vapor interface? This is assessed [66] by prepar-
ing a slab of liquid with vacuum at either end [67]. The surface tension is
computed by averaging

γinst =
Lz

2

(

Pzz − Pxx + Pyy

2

)

(2.18)

over the length of the simulation, where γinst is the instantaneous surface
tension. The first factor of 1/2 is included to account for the two interfaces
in the simulation box, Lz is the box size in the z-direction, and Pij is the ij
component of the pressure tensor. The air/liquid interfacial plane is the xy
plane.
The CG model gives a surface tension at the air/water interface of 72

± 1 dyne/cm at 303.15 K. This value agrees with the experimental value of
71.18 dyne/cm. For hydrocarbons at 303.15 K, we obtain a surface tension
of γ = 18.0 ± 1.5 dyne/cm for nonane and γ = 17.5 ± 2.0 dyne/cm for
dodecane. The experimental value [68] for the surface tension of nonane is
22.01 dyne/cm; our model is reasonable but could use minor improvement in
this respect. Although experimental data was used to parameterize the CG
force field, atomistic simulation results could have been used since they can
accurately reproduce the surface tension of water [69] and n-alkanes [70].

2.4.3 Self-assembly

Amphiphilic self-assembly is well established for generic model systems using
coarse grain simulation techniques [71,72,38,73,74,75,76,77] and is the sub-
ject of recent atomistic studies [78,79]. We have studied many self-assembly
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Fig. 2.4. Bilayer self assembly. A random initial condition (panel A) consisting
of 64 DMPC lipids and 548 water sites (representing three water molecules each)
assembles to its known thermodynamic state (panel C, the Lα phase) after passing
through an intermediate state (panel B) with some defects. Water is colored light
blue; lipid acyl tails yellow, lipid head groups red, blue, and purple.

processes from uniformly random initial conditions using the current CG
model, and will present a representative selection of them to demonstrate
the potential and limitations of the model.
At 303.15 K and with a water to lipid ratio of about 25:1, the thermody-

namic state of DMPC is the Lα bilayer phase. Such a system with 64 lipids in
the orthorhombic simulation cell is prepared randomly as shown in Fig. 2.4A.
From this setup, a MC simulation with a simple move set assembles into a
bilayer structure with some defects [61] as shown in Fig. 2.4B. Changing to
MD causes the defects to heal quickly (within 6 ns) to the final state as shown
in Fig. 2.4C.
A monolayer self assembly process is studied by randomly placing lipid

and water molecules in a slab geometry with two air/liquid interfaces
(Fig. 2.5A). The system self-assembles within 300 ps into two Langmuir
monolayers and a cylindrical micelle in the bulk water region (Fig. 2.5B).
The micelle drifts towards and fuses with one of the monolayers [63] within
1.5 ns, giving a final configuration of two unequally populated monolayers
(Fig. 2.5C).
As will be discussed in Sect. 2.4.5, inverted phases present an anisotropic

environment for the lipid species. To stabilize them, hydrocarbon may be
added as a “filler”. Such an inverse hexagonal phase was self-assembled [61]
from a random initial condition consisting of 50.5 weight percent water, 33.8
weight percent diheptadecanoylphosphatidylcholine, and 15.7 weight percent
nonane, as depicted in Fig. 2.6. This composition is experimentally [80] known
to form the inverse hexagonal phase.
The three self-assembly processes that we have described demonstrate

both the efficiency and power of our CG method. All-atom MD simulations
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Fig. 2.5. Langmuir monolayer self assembly. A random slab initial condition (panel
A) consisting of 80 DMPC lipids and 5000 water sites organizes into two Langmuir
monolayers and a cylindrical micelle (panel B). The micelle then fuses with one of
the monolayers (panel C). Water is shown in light blue and is omitted from panels
B and C for clarity. The lipid acyl tails are colored yellow. The micellar lipids of
panel B are shown with dark head groups in all three panels. The remaining head
groups are colored red, purple, and green.

must be prepared with the utmost care because the time scales accessible
are such that it is prohibitively expensive to equilibrate a system not already
almost at equilibrium. This situation is most problematic for transmembrane
peptide oligomeric bundles since the orientation of the peptides with respect
to one another is usually not known. The initial mutual peptide orientation
selected for an all-atom MD run will typically not change over the lifetime
of the run because the relevant time scale is not accessible. The CG self-
assembly processes presented here demonstrate that the preparation of the
initial condition is largely immaterial. This both relieves the burden of system
preparation and ensures that more of phase space is sampled over the course
of the simulation.



46 Steve O. Nielsen and Michael L. Klein

Fig. 2.6. Inverse hexagonal self assembly. A random initial condition (first panel)
consisting of 738 DHPC lipids, 1968 nonane molecules, and 15060 water sites as-
sembles into an inverted hexagonal phase (second panel). Water is colored light
blue; lipid acyl tail and nonane yellow; lipid head groups red, blue, and purple.

However, the periodic boundary conditions and small simulation cell size
may result in the stabilization of metastable structures. Care should be taken
to assert whether or not the final assembled structure is the thermodynamic
state. We have observed cases where an inverted phase forms when the ther-
modynamic phase is known to be lamellar (unpublished results).
Furthermore, the initial dynamics for the MD self assembly simulations

should not be considered in detail. The instantaneous pressure is extremely
high due to the large hydrocarbon-water interface and the force field was
developed under equilibrium conditions. However, the gross features of the
initial dynamics are correct. The dominant effect is for the system to minimize
the extent of the hydrocarbon-water interface.

2.4.4 Transmembrane Peptide Induced Domain Formation

Membrane lipid composition varies widely over different organelle membranes
and varies spatially within a single membrane. Such local variations in bilay-
ers allow for membrane deformation and facilitate vesicle budding and fu-
sion. Proteins might stimulate lipid exchange between membranes by bring-
ing them into contact. Newly synthesized proteins and lipids destined for
different organelles are laterally segregated in the Golgi membrane. It has
been proposed [18] that lipid domains of different hydrophobic thickness are
used to sort membrane proteins that are destined for the plasma membrane
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from Golgi proteins based on the length of their transmembrane domains.
But this picture is misleading because it is known that proteins themselves
passively induce lipid domain formation on the basis of the mismatch be-
tween the hydrophobic width of the lipid bilayer and that of the peptide [81].
What is the mechanism for this? It is related to meniscus formation, which
we now discuss.
The typical picture of the bilayer-spanning part of a transmembrane pep-

tide is of a hydrophobic alpha helix with caps that preferentially associate
with the interfacial lipid head group – water region. Membrane lipids also
have a hydrophobic region consisting of the conjunction of their acyl tails.
Lipid bilayers are more easily deformed than alpha helical transmembrane
proteins [82], and the assumption is made that the bilayer deforms to match
the hydrophobic length of the protein [83], leaving the protein virtually un-
changed. Theoretical considerations point to a range of effects that contribute
to the free energy in the presence of such a peptide inclusion. These consist of
elastic acyl chain stretching/compression, surface tension terms accounting
for the average interfacial area per molecule, curvature contributions from
the formation of a meniscus around the inclusion, and tilt modulus of the
acyl chains [12,11,13,84,85].
Peptides whose hydrophobic core is of a different length than the hy-

drophobic membrane thickness induce meniscus formation. This leads, among
other effects, to a lipid-mediated peptide-peptide force in the system [83,84],
[86,87,88,89,90,91,92]. Even in the absence of direct interactions between the
inclusions, a fluctuation-induced tendency to aggregate exists [92]. Consider
two short peptides sitting at some distance apart in the same bilayer. Each
peptide will have a negative meniscus of lipids around it. There are energetic
penalties the systems pays for these menisci such as curvature stress and acyl
chain compression. These penalties are minimized if the two peptides come
together since the system then comprises one fewer meniscus. This is the ori-
gin of the lipid-mediated force, which is attractive for this case and for the
case of two long peptides. The lipid-mediated force is expected to be repul-
sive in the case of one long and one short peptide for the same reason [84];
the curvature associated with the menisci is greatest if the two dissimilar
peptides are in close proximity.
Of current interest in the literature is the effect of a transmembrane pep-

tide on the distribution of lipids in the bilayer in which the peptide is embed-
ded [81]. The hydrophobic matching principle states that, in the immediate
vicinity of the peptide, there is an accumulation of the lipid which is hy-
drophobically best matched [93].
This simple picture is complicated by the possibility of the lipid species

being in phases of different fluidity. The gel to liquid crystal phase transition
temperature in a phospholipid increases with increasing acyl chain length.
Experimentally, then, one can choose, for a mixed lipid bilayer consisting of
two different tail length lipids, to be in the gel-gel coexistence region, the gel-
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liquid region, or, at still higher temperature, the liquid-liquid region. Domain
formation in mixed bilayers (in the absence of transmembrane peptides) is
usually attributed to the formation of islands of the gel phase [94] of the longer
tail lipid in the gel-liquid region of the phase diagram. We wish to study the
effect of a membrane inclusion on an otherwise well-mixed system [11,12] –
hence we wish to be in the liquid-liquid region of the phase diagram where
domain formation is not observed [93].
The liquid crystal to gel phase transition temperature for the phospho-

lipid model we employ (see Sect. 2.3.3) occurs below the temperatures used
in the simulations we have conducted. Thus, we are able to assess the ef-
fect of hydrophobicity in isolation from the gel/liquid crystal phase transi-
tion. Moreover, the peptide model we employ is explicitly chosen to be stiff
and nonspecific, simply consisting of a hydrophobic cylinder with hydrophilic
caps [95] as depicted in Fig. 2.7.

Fig. 2.7. Snapshot of the peptide model showing the van der Waals radius and the
skeletal bonding structure. The peptide consists of a hydrophobic cylinder capped
with hydrophilic sites. The outer, middle, and inner capping rings are composed of
identical sites, but have been colored differently (blue/purple/pink) to aid the eye.

We have characterized the thickness and profile of a bilayer consisting
of a mixture of lipids [95] in the absence of peptide. Will will only mention
one case here, namely an equal mixture of DC29PC (long lipid) and DC11PC
(short lipid), shown in Fig. 2.8. The notation is as follows. We refer to a diacyl-
glycero-phosphatidylcholine with n carbons in each acyl chain as DCnPC. For
example, DMPC is denoted by DC14PC. There are two features of note. The
first is that the head groups all occupy the same region of space normal to
the bilayer plane. This shows that the two lipids are miscible in one another.
The second is the hydrocarbon tail density. The driving force for the bilayer
width is the lipid tail packing. The tail density for the short lipids is depleted
in the middle of the bilayer (see Fig. 2.8). The long lipids fill the hydrocarbon
region up to its bulk density value.
A system consisting of 208 short lipids, 208 long lipids, and 10400 water

sites is initially prepared in a patchwork fashion as shown schematically in
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Fig. 2.8. The equilibrium lipid electron density profile normal to the bilayer plane
for a mixed lipid system (shown in thin line) consisting of 80 short lipids (shown in
thick solid line) and 80 long lipids (shown in thick broken line). In all three profiles,
the peak around ±18 Å is due to the lipid head groups.

Fig. 2.9. Since we know the head group profile normal to the bilayer plane,
we characterize the extent of mixing with two-dimensional radial distribution
functions in the plane of the bilayer.
The patchwork initial configuration of the two lipids melts and the two

lipids mix. The time scale for this mixing process is determined by the lat-
eral diffusion of lipids in the plane of the bilayer. The extent of miscibility
is quantified by calculating the three head group – head group radial distri-
bution functions in the plane of the bilayer. They clearly mix as shown in
Fig. 2.10. In fact, the radial distribution functions show that, if anything,
the long and short lipids associate preferentially with each other rather than
with themselves.
The short peptide depicted in Fig. 2.7 is inserted into this mixed bilayer.

The hydrophobic length of the peptide is smaller than the hydrophobic thick-
ness of the bilayer. The concentration of lipids around the tube is initially
slightly enriched in the long species as shown in the first panel of Fig. 2.11.
This is done deliberately so as to not bias the possible domain formation since
we eventually expect the short lipid to collect around the tube. When incor-
porated into the membrane, a meniscus forms in the vicinity of the peptide.
This meniscus is depicted in Fig. 2.12. The lipids residing next to the peptide,
at a distance of roughly 15 Å from its center (see Fig. 2.12), are maximally
perturbed from their equilibrium position. The lipids closer to the peptide
are farther away from the bilayer center because they reside with their head
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Fig. 2.9. Schematic of the patchwork initial condition for the mixed lipid bilayer
simulation consisting of 208 short lipids, 208 long lipids, and 10400 water sites.
Each patch contains only one of the two species of lipids. The plane of the bilayer
is shown – the two leaflets are symmetrical.
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Fig. 2.10. Two-dimensional lipid-lipid radial distribution functions (rdfs) in the
bilayer plane for the simulation whose initial condition is shown in Fig. 2.9. The
first panel shows the initial distribution taken from the first 50 ps of the simulation.
The second panel shows the equilibrated distribution taken from the last 1 ns of
the MD simulation. The short lipid – short lipid rdf is shown in thin line, the long
lipid – long lipid rdf in thick broken line, and the short lipid – long lipid rdf in thick
solid line. The lipid location is taken to be the center of mass of the head group.
Both leaflets are included, which is the reason the distributions do not go to zero
at zero (projected) separation.
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groups immediately above (for the upper leaflet) the hydrophilic peptide cap,
with their acyl tails bent to flank the length of the hydrophobic core of the
peptide. After 10 ns of simulation, domain formation is clearly seen. The lipid
species are distributed around the peptide as shown in the second panel of
Fig. 2.11. The region within 30 Å of the tube center is enhanced in the short
lipid species.
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Fig. 2.11. Two-dimensional radial distribution of lipids around the transbilayer
peptide. The first panel shows the distribution immediately after the the peptide
is inserted. The insertion location was chosen to correspond to a region of local
enhancement of the long lipid species. The second panel shows the equilibrated
distribution taken from the last 1 ns of the MD simulation. The short lipid is
denoted by solid line, and the long lipid by thick broken line. The lipid location is
taken to be the center of mass of the head group. The peptide location is taken to
be its center of mass. Both leaflets are included.

This domain formation induces a non-homogeneous lipid concentration
field around the peptide. In a lattice Monte Carlo simulation [85] it was found
that if two such regions with non-homogeneous concentration fields overlap,
an attractive force between the peptides results. The pair potential for this
indirect force can be obtained from the free energy of the system, which
depends on the distance between the peptides. We are currently pursuing
this avenue by placing more than one peptide in the simulation cell.

2.4.5 Transmembrane Peptide Induced
Lα to HII Phase Transition

In the previous section we saw that the presence of transmembrane pep-
tides in the lamellar lipid phase can induce meniscus and domain formation.
At high concentration, transmembrane peptides can have more dramatic ef-
fects on the membrane structure. Short peptides (namely peptides whose
hydrophobic length is shorter than the bilayer thickness) have been shown to
induce phase transitions from the lamellar to an inverted phase (see Fig. 8
of Killian [96] for an illustration). Long peptides do not have this effect [96]
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Fig. 2.12. Extent of the lipid meniscus formed around the transbilayer peptide.
The radial distance r of lipids from the peptide is plotted against the distance z
of lipids from the peptide in the direction normal to the bilayer plane. The short
lipid is denoted with solid line and the long lipid by thick broken line. The two
leaflets are shown by positive and negative values. The lipid position is taken to be
the center of mass of the head group. The peptide position is taken as its center of
mass.

– they tilt instead and the lipid remains in the lamellar phase. If the peptide
hydrophobic length is grossly mismatched from the membrane thickness, the
peptide may actually fail to insert [82].
For the tryptophan capped synthetic peptides used experimentally, the

two dominant peptide/lipid interactions are thought to come from the hy-
drophobic length of the peptide and the tryptophan anchoring residues [97].
The bulky multiple tryptophan groups at each end of the peptide are thought
to play a dual role in anchoring the peptide ends in the head group region
of the bilayer, and in preventing peptide aggregation. In simulation work the
possibility of aggregation can be entirely avoided by considering only a single
peptide per unit cell. This, combined with an orthorhombic cell geometry,
limits the phase transition obtainable to an inverse cubic phase, rather than
than the experimentally observed inverse hexagonal (HII) phase [96]. Fur-
thermore, our peptides (see Fig. 2.7) do not have special chemistry to anchor
the ends of the peptide in the head group region. We are thus able to assess
the effect of hydrophobicity in isolation from these other competing effects
which make the experimental work difficult to interpret.
Both the existing experimental and theoretical studies to date do not shed

light on the dynamical mechanism which could drive such a phase transition.
Rather, the stability of the resulting HII phase is justified a posteriori [13,96].
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We propose, by use of CG MD, a dynamical mechanism wherein the transbi-
layer peptide induces the formation of a meniscus (see Fig. 2.13) which causes
water to move into the meniscus region. This movement depletes the water
layer far from the peptide, allowing the bilayers in these regions to fuse. This
fusion event pinches off the water sheets, trapping the water in cylindrical
pores which are the hallmark of inverted phases (see Fig. 2.13). Figure 2.14
shows the final structure from our simulation [95]. This simulation has as
its initial condition a configuration identical to that described in Sect. 2.4.4
immediately after the peptide is inserted into the bilayer. Two modifications
are then made before the simulation is run. Firstly, the water to lipid ratio
is reduced to 25:1 which is the normal bilayer Lα hydration level. Secondly,
the unit cell size is reduced from containing roughly 400 lipids to having 200
lipids. This effectively increases the peptide to lipid ratio. A complete study
of the peptide to lipid dependence is forthcoming [95].

Fig. 2.13. Schematic illustration of the dynamical mechanism of the peptide-
induced lamellar (first panel) to inverse cubic (second panel) phase transition. The
orthorhombic simulation unit cell is shown as a striped rectangle. The hydrophobic
core of the peptide is shown in white, the hydrophilic caps are shown in black, and
water is indicated by diagonal stripes. See text for details.

To have the possibility of forming an inverse hexagonal phase instead
of an inverse cubic phase, it is necessary to include more than one peptide
in the orthorhombic unit cell. This leads to additional complications due to
the possibility of a lipid-mediated peptide-peptide interaction as discussed in
Sect. 2.4.4.
The inverse hexagonal and cubic unit cells are not isotropic in the sense

that the position of a lipid in the cell affects how much room it has for its
tail to stretch out. It has been argued that the short peptides occupy the
shortest distance between water pores [13,96], relieving the longer acyl tails
from having to pack into this geometry, and allowing them to occupy the
more spacious “corner” regions (see Fig. 5 of May and Ben-Shaul [13] for an
elegant schematic illustration).
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Fig. 2.14. Snapshot of the final configuration of the MD simulation consisting of
one peptide, 100 short lipids, 100 long lipids, and 2000 water sites. The simulation
unit cell is shown in black line. An inverse cubic phase has formed as is schematically
depicted in the second panel of Fig. 2.13. Coloring is as follows. Water is colored
blue; lipid head group sites are colored red, purple, and green; lipid acyl tails yellow,
and peptide dark grey and blue.

The phase transition to an inverted phase which we observe occurs in a
mixed lipid system; this transition should also occur in a single lipid system
by the same mechanism. However, the transition is slightly easier in the mixed
lipid case for two reasons. Firstly, the regions of the bilayer that are depleted
of water gradually become enriched in the long lipid by the domain formation
process discussed in Sect. 2.4.4. This facilitates the membrane fusion event
since the long tail lipids would like to increase the bilayer width, thus pro-
viding another force that tends to push water out of this inter-bilayer region.
Secondly, since the inverse cubic phase does not present an isotropic environ-
ment for the lipids, having different lipid species present helps to lessen the
free energy penalty of this anisotropy.

2.4.6 Buckling Instabilities in Langmuir Monolayers

Langmuir monolayers (LMs) are widely used as models for studying mem-
brane bound proteins [98,99] and as precursors for the deposition of multilayer
Langmuir-Blodgett films [23]. Of interest here is their role in normal respi-
ratory function. Premature babies who do not yet have an adequate supply
of lung surfactant suffer from Respiratory Distress Syndrome (RDS), a con-
dition characterized by lung collapse upon exhalation. The damage done to
lung tissue by the cyclic collapse and re-inflation events causes respiratory
failure [100]. Pulmonary surfactant supports the breathing cycle by reducing
the surface tension at the air/liquid interface in the lung [101]. This surfactant
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is primarily a mixture of phospholipids (of which DPPC is the most abun-
dant) and the surfactant proteins (SPs) SP-A, SP-B, and SP-C. However,
the molecular mechanisms of film formation and adaption to the breathing
cycle are unknown [102].
LMs are usually studied as a function of surface coverage by either chang-

ing the number of surfactant molecules at fixed surface area A, or by changing
the surface area at a fixed quantity of surfactant. Experimentally one mon-
itors the surface pressure, π = γ0 − γ, where γ0 is the surface tension of
the pure air-water system and γ is the resultant surface tension in the pres-
ence of surfactant. Pressure-area isotherms, where π versus A is measured
at constant temperature, can be mapped out and frequently show hysteresis
loop behavior as some of the surfactant is lost due to irreversible monolayer
collapse [103].
Surface tension is lowered by the presence of surfactant in part because the

hydrogen bonding network of water is disrupted at the interface. But both all-
atom MD [54] and experiments [55] show that zwitterionic head groups and
water together still form a hydrogen bonding network. The DCnPC CG lipids
we employ are seen to give too low a surface tension as shown in Fig. 2.15,
but even recent fully atomistic MD results [104] are far from reproducing
experimental surface pressure versus area per lipid isotherms for Langmuir
monolayers. In the CG model we do not have hydrogen bonds – their effect
is captured in a mean-field manner by the use of effective potentials. The
CG head groups are floppy due to soft potentials [63] and the head group
– head group interactions might be too weak. The area per lipid is 10% to
15% too large in the CG model which results in a slight offset compared
to the experimental curve (see Fig. 2.15). These discrepancies can be used
to improve the CG model which has previously been parametrized only for
lamellar phases.
The long lipid reaches zero surface tension (see Fig. 2.15) at about 69

Å2 area per lipid. This is close to the equilibrium lamellar phase area per
lipid [106] of 75 Å2. The smallest area per lipid systems display negative
surface tension, indicating that the system is in a meta-stable state, due in
part to finite size effects as discussed below.
At high coverage the system tends to increase its interfacial area, eventu-

ally leading to collapse of the monolayer [107]. In fact, the amplitude of
the thermal fluctuations diverges as the surface tension approaches 0 (π
approaches γ0) [108]. Milner [14] showed that an ideal diblock copolymer
monolayer develops a buckling instability only at zero surface tension. Col-
lapse usually occurs before this limit. However, in the work by Schief [108]
on DPPC monolayers, collapse is not observed until ≥ 71 dyne/cm (with
γ0 = 72). Collapse can occur into the solvent subphase or outwards on top of
the monolayer.
The outward collapse is by the formation of multilayers [109]. These mul-

tilayers can be oriented in various ways. One possibility is the formation of
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Fig. 2.15. Surface pressure in dyne/cm versus area per lipid in Å2. The long tail
lipid system of the present study is compared with the experimental result of Somer-
harju [105] for DC16PC at 321.15 K. Error bars are assigned by blocking the data
into ten 50 ps windows, computing the average in each window, and then using
these ten values to compute the standard deviation.

a trilayer by a “rollover” mechanism in which a bilayer is formed on top of
the monolayer [110]. If the bulk solution in equilibrium with the monolayer
is at or above its critical micelle concentration (CMC), the monolayer may
shed micelles readily into the bulk [14]. The collapse phenomenon is not well
understood from both experimental and theoretical perspectives [110]. On
the theoretical [111,8] side, however, an extensive analysis of contributions to
the bending free energy has been undertaken by Hu [9].
The long tail lipid monolayers of Fig. 2.15 are destabilized [66] by adding

more lipid, leading to monolayer collapse. The two mechanisms we observe
whereby the monolayer relieves its high surface pressure is either through the
development of curvature (see Figs. 2.16A and 2.17) to increase the interfacial
area or through a loss of head groups to the exterior of the monolayer by a
bridge transport mechanism, as seen in Fig. 2.16B. This bridge minimizes the
energy penalty for the head groups traversing the hydrophobic region. After
enough lipids are channeled to the exterior, the monolayer stabilizes and
flattens (see Fig. 2.16C). For the simulation of Fig. 2.16, the instantaneous
surface tension versus time is shown in Fig. 2.18.
The periodic boundary conditions of the simulations we have done limit

the development of curvature in the monolayer. This geometrical constraint
restricts the interfacial area increase that comes with developing a non-planar
geometry, artificially stabilizing the systems down to moderate negative sur-
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Fig. 2.16. Monolayer instability and collapse shown at one interface of the 120
long lipid per interface system. The initially flat interface (not shown) develops
some curvature (panel A) and then opens a bridge to the exterior of the leaflet
(panel B). This bridge transports enough material to eventually bring the system
back into equilibrium with a flat monolayer interface (panel C). See Fig. 2.18 for
the time and the surface tension of these snapshots. Acyl tails not shown. Coloring
is as follows. Water blue, choline red, phosphate purple, glycerol blue, and ester
green.

Fig. 2.17. An initially diffuse system of 250 long lipids per interface was prepared
and the area per lipid was decreased by shrinking the cross-sectional box size (con-
strained to be square) by applying an external pressure of 4.5 atm to the system.
The system is driven into the negative surface tension regime shortly after 100 ps.
This snapshot is taken at 350 ps. Only one of the two interfaces is shown. Acyl
tails not shown. Coloring is as follows. Water blue, choline red, phosphate purple,
glycerol blue, and ester green.

face pressure values. The larger simulation cell size of Fig. 2.17 allows the
extent of bending to develop to much greater curvatures than for the simu-
lation of Fig. 2.16.
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Fig. 2.18. Instantaneous surface tension (dyne/cm) versus raw simulation time (ps)
for the 120 long lipid per interface unstable system shown in Fig. 2.16. The data is
smoothed with a 100 ps wide symmetrical second order Savitzky-Golay filter [35].
Shown for comparison is the corresponding 70 long lipid per interface curve, which
has a surface tension of roughly zero (corresponding to a surface pressure of roughly
72 dyne/cm) as shown in Fig. 2.15. The four points marked on the plot are as
follows from left to right. The first point corresponds to the initially flat 120 lipid
per interface monolayer. The second point corresponds to Fig. 2.16A when the
interface has developed curvature. The third point corresponds to Fig. 2.16B when
the monolayer is expelling lipids. The fourth point corresponds to Fig. 2.16C when
the monolayer has come to equilibrium.

The simulation of Fig. 2.17 differs as well in that the area per lipid is
decreased by compressing the simulation box to mimic experiments in which
the surface pressure is controlled and to demonstrate that the observed in-
stabilities are generic and not dependent on the method of preparation.
It is seen that at high surface coverage the monolayer becomes unsta-

ble and sheds lipids. Experimentally, surface pressure versus area per lipid
isotherms frequently show hysteresis loop behavior as surfactant is perma-
nently lost through collapse. Lungs undergo continual expansion/compression
cycles. It is thought that the protein SP-B plays a major role in the adsorp-
tion of new material into the interface during inspiration [102]. During the
subsequent expiration event, the main function of SP-C is to expel non-DPPC
lipids from the interface [102]. In addition, the relative amounts of DPPC and
SP-C vary with surface pressure and this variation results in changes in the
elasticity and viscosity of the film [101]. These protein-induced modifications
are thought to support the breathing cycle and would be interesting to pursue
with CG studies.
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2.5 Future Perspectives

There are three fronts along which the current CG studies can be continued.
Firstly, systems can be studied whose constituent components have already
been parameterized. An example of this is the study of Langmuir monolayers
using existing water and phospholipid parameters as illustrated in Sect. 2.4.6.
Inaccuracies which come to light in such studies can point the way to im-
proving the model, which has been parametrized only for lamellar phases.
Secondly, existing parameters can be used as building blocks for new species.
The cylindrical peptide discussed in Sects. 2.4.4 and 2.4.5 is an example of
this. Thirdly, new species can be fully parameterized from a combination of
all-atom MD and experimental observables.
The appeal of the second front is that a new species can be constructed

very quickly. Moreover, the construction can be artificial in the sense that
some interactions can be deliberately excluded or modified in order to assess
their impact on the system under study. The drawbacks to this partial param-
eterization are that the model loses its predictive power for specific molecular
systems, and the interaction parameters may not even be amenable to a crude
guess based on the existing force field. As an example of this last point, the
effect of unsaturation in the lipid acyl tail cannot be mimicked based on the
DMPC parameter set.
There are numerous topics which are amenable to study with the CG

method, some of which we now mention. Bilayers and monolayers involving
a few lipid species and cholesterol are suitable to study raft formation [1].
Mixed lipid Langmuir monolayers [112] display a rich variety of microdomains
of different composition and phase. It would be interesting to see how many
of these are accessible with CG models. The compression/expansion cycle of
the lung surfactant DPPC could be studied in the presence of the surfactant
proteins (SPs) SP-A, SP-B, and SP-C, which are known to alter monolayer
collapse [102]. Lipid mediated protein-protein interactions can be used to
explore membrane protein crystallization [19]. Oligomeric channel protein
insertion into membranes and their assembly and mutual orientation [113]
across the bilayer are of interest both for antimicrobial and purely struc-
tural studies. Related to this is cyclic D,L-α-peptide self-assembly [114] and
membrane insertion and disruption [115]. Monolayer structure at solid/water
interfaces [116] displays novel geometry such as a hemicylindrical micelles
which is being elucidated with atomic force microscopy [117]. Entropic and
enthalpic interactions between amphiphile surfaces [7,6] such as micelles, lipid
bilayers, microemulsion droplets, and combinations thereof can be computed
as potentials of mean force. Protein alignment can be studied as a function
of surface pressure in Langmuir monolayers [99]. Self-assembled vesicles from
non-lipid species such as diblock copolymers [118] and surfactant-like pep-
tides [119] offer alternatives for many applications including targeted drug
delivery. In conclusion, there are clearly many possible future applications of
CG models.
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Abstract. Recently, our ability to equilibrate atomistic models of synthetic poly-
mers and biopolymers has been significantly enhanced through the development
of Monte Carlo schemes employing moves which modify the connectivity of atoms
along the chains. In this chapter, the geometric “bridging” construction under-
lying these moves is explained and the statistical mechanical underpinnings of
Monte Carlo algorithms employing these moves to sample various, appropriately
designed, ensembles are discussed. Concerted rotation, directed internal bridging,
end-bridging, directed end-bridging, scission-fusion, double bridging, intramolecu-
lar double rebridging moves, and their combination with parallel tempering are
developed in some detail.

Results are presented from applying the connectivity-altering Monte Carlo algo-
rithms to predict volumetric behaviour, packing, chain conformation and entangle-
ment properties in long-chain synthetic polymer melts (polyethylene, polypropy-
lene, polyisoprene); melt elasticity and birefringence under conditions of steady-
state flow; sorption equilibria of alkanes in polyethylene melts; and composition
profiles at solid/polymer interfaces strengthened with grafted polymer chains. The
molecular-level insight gained from these calculations is discussed, as is the role
of the new algorithms as tools for the development of hierarchical modelling ap-
proaches to structure - processing - property - performance relations in polymer
systems.

3.1 Introduction

Understanding and predicting the relations between structure, properties,
processing, and performance of polymeric materials computationally is both
fundamentally interesting and practically very relevant, since it can lead to
faster and more economical design of materials and processes for specific
applications. Today, polymer modelling is widespread and growing in both
industrial and academic environments.
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One serious challenge faced by polymer modellers, especially those inter-
ested in connecting macroscopic material behaviour to the chemical structure
and architecture of constituent macromolecules, is that polymer structure and
dynamics are characterised by extremely broad spectra of length and time
scales. Intramolecular correlations and local packing of chains in the bulk
exhibit features on the length scale of bond lengths and atomic radii, i.e. Å.
The Kuhn statistical segment of a typical synthetic randomly coiled polymer
is on the order of 10 Å and can be more than an order of magnitude higher
for macromolecules with stiff backbones. The radius of gyration of entire
chains in the amorphous bulk scales with the chain length X as X1/2 and
is on the order of 100 Å for typical molecular weights; the smallest dimen-
sion of microphases (lamellae, cylinders, spheres) in microphase-separated
block copolymer systems is on this order of magnitude, while domain sizes in
semicrystalline polymers and immiscible polymer blends may well be on the
order of μm. Even broader is the range of time scales characterising molecular
motion in polymers. While localized vibrational modes of chains have periods
on the order of 10−14 s, conformational transitions of individual bonds over
torsional energy barriers in the melt state have waiting times in excess of
10−11 s. Longer and longer sequences of segments along the backbone exhibit
longer and longer correlation times. The longest relaxation time, required for
a chain to diffuse by a length commensurate to its size and thus “forget”
its previous conformation, is critical to the viscoelastic response of polymer
melts to flow. This time scales as X2 for low molecular weight melts in the
Rouse regime and as X3.4 for X exceeding a critical chain length that is suffi-
cient for the development of entanglements in the reptation regime; for a C800
polyethylene melt at 450K this time is on the order of 3 μs, while it easily
exceeds the millisecond time scale for the molecular weights encountered in
typical processing operations.
Atomistic molecular dynamics (MD) is probably the most convenient sim-

ulation method for linking macroscopic properties to molecular constitution.
Unfortunately, however, even when state-of-the-art developments, such as
reversible multiple time step algorithms [1] are invoked, atomistic MD can
typically track the evolution of systems of length scale ca. 100 Å for times
no longer than a few decades of nanoseconds. While the length scale of MD
can be increased significantly by use of domain decomposition strategies on
parallel computers, the time scale of MD falls short of the longest relaxation
times of real-life polymer systems; alternative or complementary simulation
strategies are needed.
In response to this need, the polymer simulation community has moved

actively in two research directions in recent years: (a) Development of mul-
tiscale modelling approaches consisting of many levels, each level addressing
phenomena over a specific window of length and time scales; links between
different levels can be established through systematic “coarse-graining” of the
model used to represent the polymer [2,3]. (b) Development of new simulation
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algorithms, which can move through configuration space more efficiently than
MD and achieve equilibration at all length scales; in this research direction,
Monte Carlo (MC) schemes play a prominent role. This chapter focusses on a
class of MC algorithms that can be used in conjunction with detailed atom-
istic models of dense multichain polymer systems, such as polymer melts.
MC simulations have a long history in polymer science. The earliest poly-

mer simulations were conducted with MC using lattice models, first on single
chains [4] and then on multichain systems [5]. Lattice MC work on poly-
mers has been reviewed [6]. At melt densities, the excluded volume interac-
tions among polymer segments, the connectivity of polymer segments along
chains, and the conformational stiffness of chain backbones make it very dif-
ficult to sample configuration space efficiently. Melt MC simulations can be
classified into two broad categories. The first consists of simulations aimed at
extracting both structural/thermodynamic and dynamical information over
some (not too short) time scales. Simulations in this category are most of-
ten conducted using coarse-grained (e.g. lattice-based) models and employ
strictly local moves that emulate the actual dynamics of the polymer (“kink-
jumps”, “end rotations” and “crankshaft moves” in simple lattice models,
single monomer displacements in bond fluctuation models [6]). Simulations
in the second category dispense with the objective of following chain dynam-
ics and aim primarily at achieving equilibration. It is in this category that the
maximum power of MC simulations can be unleashed through the design of
moves which, although “unphysical” from the point of view of true dynamics,
induce drastic changes in the molecular configuration while at the same time
satisfying the basic requirements of ergodicity and microscopic reversibility.
MC schemes based on such moves may induce equilibration many orders of
magnitude more efficiently than MD, for the same model of molecular geom-
etry and energetics. An early “unphysical” move that has proved quite useful
in both lattice and continuous-space simulations of dense polymer systems is
the reptation, or “slithering snake” move [7,8,9]. This deletes a segment from
one end of a (linear) chain and appends it at the other end at a randomly
chosen angle, the end result being a “sliding” motion of the chain along its
contour by one segment.
The 1990s have witnessed the development of several powerful bias MC

algorithms appropriate for continuous-space simulations of dense polymer
systems. Configurational bias (CB) MC is such an algorithm, developed by
Siepmann and Frenkel [10] and by de Pablo, Laso, and Suter [11] on ideas
that can be traced back to the seminal work of Rosenbluth and Rosenbluth
[12]. Here one cuts off a terminal part of of chain and re-grows it segment-by
segment using an energetic bias, so as to avoid overlaps with the rest of the
chain and with the environment. For each added segment k, a number nq of
candidate positions q are considered, among which one is chosen according
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to the probability distribution

p
(q)
CB,k =

exp(−βV(q)
CB,k)

nq∑

l=1
exp(−βV(l)

CB,k)
. (3.1)

Here β is (kBT )−1 and V(l)
CB,k is normally chosen as the increase in system

potential energy brought about by placing segment k at position l. The bias
inherent in this procedure is removed at the acceptance stage. Acceptance
probabilities ensure that microscopic reversibility is satisfied by incorporating
Rosenbluth weights

WCB =
∏

k

nq∑

l=1

exp(−βV(l)
CB,k) (3.2)

for both the forward and the reverse move; for the latter, the actual starting
configuration is considered as one of the trial configurations that would be
generated if the move were attempted in reverse.
For the simulation of phase equilibria, configurational bias has been used

in the framework of an expanded grand canonical ensemble to alleviate prob-
lems associated with large chain molecules being inserted into/deleted from,
or exchanged between dense phases [13]. In an expanded ensemble simulation,

configurations are sampled according to the partition function
M∑

y=1
Qy exp(wy),

where y is a parameter in the Hamiltonian of the system, allowed to range
overM discrete values (“states”); Qy is a conventional (e.g. grand canonical)
partition function, evaluated at parameter value y; and the wy are weighting
factors modulating the probability of appearance of various y values. The
expanded ensemble was originally proposed [14] for the calculation of free
energies of solvation of small hydrophobic solutes and ions in water at infi-
nite dilution, the parameter y corresponding to the strength of interaction
between the solute and solvent molecules. In the implementation of [13], y
modulates the length of a “tagged” chain which is allowed to fluctuate in
size.
An ingeniously simple technique that can accelerate the equilibration of

systems with rugged potential energy hypersurfaces, which tend to make
conventional simulation schemes nonergodic at low temperatures, is parallel
tempering [15]. Parallel tempering considers a larger ensemble of n systems,
each equilibrated at a different temperature Ti(i = 1, ...,M). The system of
interest is the system of lowest temperature; the systems of higher temper-
ature usually have the same Hamiltonian as the system of interest and are
added in order to help overcome energy barriers and thereby accelerate equi-
libration. The systems of different temperature are considered as independent
of each other, so the partition function sampled is actually the product of
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the individual partition functions at the different temperatures, i.e. of the

form
M∏

i=1
Qi(N,V, Ti). There are two types of moves: Regular “configuration”

moves, performed at each temperature, and “swapping moves”, which ex-
change configurations between two systems i and j. A swapping move is
accepted with probability min [1, exp(ΔβijΔVij)], with Δβij and ΔVij being
the differences in reciprocal temperatures (times kB) and energies between
the two systems. A prerequisite for the scheme to work is that the energy
histograms of systems adjacent in the temperature ladder should overlap. Par-
allel tempering has been used to sample configurations of biological molecules
[16,17] and synthetic polymers and will be discussed in more detail later on
in this chapter.
Reptation and configuration bias operate only at chain ends; when used

with realistic continuum models, they benefit from the excess free volume
available near chain ends. Their effectiveness degrades in very long-chain
systems, where chain ends are scarce. Moves capable of inducing drastic re-
configuration of internal sections of chains would be highly desirable. Such
moves were introduced for lattice models in the 1980s in the form of the
“chain breaking”, or “pseudokinetic” MC algorithms [18,19,20]. These algo-
rithms alter the connectivity among polymer segments in the lattice model at
the expense of introducing some polydispersity (distribution of chain lengths)
in the polymer. Small alterations in the connectivity result in large jumps in
the configuration space of the polymer, especially accelerating the rate of
change of long-range structural features such as the end-to-end vectors and
radii of gyration of the chains.
More recently, it has become possible to design connectivity-altering algo-

rithms for continuous-space polymer models represented in atomistic detail.
This chapter discusses the geometrical and statistical mechanical underpin-
nings of these algorithms, presents measures of their efficiency and representa-
tive applications aiming at the prediction of physical properties of long-chain
polymer systems.
The chapter is organised as follows. Section 3.2 discusses the basic geomet-

ric problem of bridging, whose solution enabled the application of connecti-
vity-altering algorithms to atomistic models. Section 3.3 presents a variety
of intra- and intermolecular moves that can be designed around the bridging
construction and explains a variety of ensembles in which these moves can be
implemented. Finally, Sect. 3.4 presents some applications from a variety of
polymer systems and property prediction problems for which the algorithms
have been used so far.

3.2 The Bridging Construction

In this section we briefly examine some geometric problems whose solution al-
lows using connectivity-altering algorithms in continuous space with detailed
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Fig. 3.1. General geometric problem of bridging: The two bonds, 01 and 56, are to
be bridged through the rigid body B, leading to the formation of a chain segment
with prescribed bond lengths and angles. Note that bonds 22′ and 4′4 are rigidly
affixed to B.

atomistic models. While breaking connectivity does not pose any serious ge-
ometric problems (it can be accomplished by eliminating a sequence of one
or more repeat units from the backbone, with simultaneous conversion of the
units on either side into terminal units), establishing connectivity is more
challenging.
The general problem of establishing connectivity, or “bridging”, in de-

tailed atomistic polymer models, can be posed as shown in Fig. 3.1. Given
are two bonds, 01 and 56, in three-dimensional space. Also given is a rigid
solid body of arbitrary shape, B, possessing two bonds, 22′ and 4′4, pro-
truding from it; in actual applications, B is a chemical moiety of prescribed
internal geometry. One seeks to bridge 01 and 56 through B by placing B
at an appropriate position and orientation and constructing two new bonds
12 and 45 in such a way that the bond lengths l12, l45 and the bond angles
π − θ1, π − θ2, π − θ4, π − θ5 have prescribed values. There are 6 unknowns
in the problem, namely the three translational and three orientational de-
grees of freedom of B in its bridging position. There are also 6 equations or
constraints, arising from the requirement that l12, l45, θ1, θ2, θ4, and θ5 have
prescribed values. Thus, the problem is well-posed.
Particularly useful is the case where the bonds 22′ and 4′4, rigidly affixed

to B, are coplanar, the lines on which they lie intersecting at a point 3.
In this case, the bridging body B can be replaced by the triplet of points
{2, 3, 4}, as far as the geometric solution is concerned. In other words, the
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bridging problem can be posed as follows [21] (Fig. 3.2 ): Given two bonds 01
and 56 in space, it is sought to bridge them with a triplet of points (atoms
or pseudoatoms) {2, 3, 4}, such that the bond lengths l12, l23, l34, l45 and the
bond angle supplements θ1, θ2, θ3, θ4, and θ5 have prescribed values. We will
call this the “trimer bridging problem”.

Fig. 3.2. Geometric problem of trimer bridging. The bonds 01 and 56 are to be
connected through the triplet of points {2, 3, 4}. Bond lengths and bond angle
supplements that are specified are indicated.

A solution procedure for the trimer bridging problem is given in [21].
With l12 and θ1 fixed, the locus of point 2 is a circle C2 lying in a plane
normal to the line connecting points 0 and 1, with its centre on that line.
Similarly, with l45 and θ5 fixed, the locus of point 4 is a circle C4 lying in
a plane normal to the line connecting points 6 and 5, with its centre on
that line. With l12, l23 and θ2 fixed, the distance of point 3 from point 1
is fixed, and therefore point 3 lies on a sphere of known radius centred at
point 1. Similarly, with l34, l45 and θ4 fixed, point 3 also lies on a sphere of
known radius centred at point 6. Therefore, point 3 lies on the circle C3 which
constitutes the intersection of two known spheres (see Fig. 3.3). Thus, trimer
bridging is reduced to the following geometric problem: Given three circles,
C2, C3, C4, determine one point on each circle (r2 ∈ C2, r3 ∈ C3, r4 ∈ C4), such
that the distances |r3 − r2|, |r4 − r3|, and |r2 − r4| have prespecified values
(l23, l34, and (l223+ l

2
34+2l23l34 cos θ3)

1/2, respectively). This problem is cast
in the form of three equations in three angular variables φL, φR, and ψ which
specify the positions of r2, r3, and r4 along their respective circles (see Fig.
3.3). One of the equations is quadratic in tan(φL/2) and another is quadratic
in tan(φR/2), allowing easy elimination of these variables in terms of ψ and
reduction of the whole problem into a single equation of the form F (ψ) = 0. In
general, F (ψ) has four branches, because the quadratic equations contribute
up to two real solutions each. Solving the trimer bridging problem amounts
to finding all roots of F (ψ) = 0 on all four branches. The requirement of a
nonnegative discriminant for the two quadratic equations leads to a couple of
quartic inequalities in tan(ψ/2), which are solved analytically to determine
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feasibility regions for ψ, i.e. subintervals of the domain [−π, π) over which
the function F (ψ) exists. In [21] the solution of F (ψ) = 0 in each of these
subintervals is performed numerically, using a combined bisection and Regula
Falsi algorithm.

Fig. 3.3. Schematic of the trimer bridging geometric solution, according to [21].
Fixed, but otherwise arbitrary, reference points rL and rR are used to define the
torsion angles φL and φR. Rotations of φL and φR sweep out the loci of points 2
and 4 (short-dashed circles C2 and C4, respectively). Point 3 lies on circle C3, which
constitutes the intersection of two spheres of known radii centred at points 1 and
5. The position of point 3 along C3 is specified by angle ψ. (Reproduced from [21],
with permission).

The original formulation of trimer bridging [22] was cast in the generalised
coordinate system introduced by Flory [23] for describing the conformation
of atomistically detailed chains, and followed a mathematical procedure for
ring closure proposed by Gō and Scheraga [24]. Given the positions of atoms
−1, 0, 1, 5, 6, and 7 and all bond lengths and bond angles, one seeks to
determine the torsion angles φ1, φ2, φ3, φ4, φ5, φ6 in order to connect to the
skeletal atoms 5, 6, and 7 and to the chain beyond in a manner that respects
the bonded geometry of the chain (see Fig. 3.4 ). The solution strategy starts
by expressing the position vector r5 and the unit vector b̂6 along bond 56
in the local coordinate frame of bond 1 as functions of the torsion angles
φ1 through φ5. Flory’s transformation matrices between the local coordinate
frames of skeletal bonds are used in deriving these functional expressions.
The functions expressing r5 and b̂6 in terms of φ1 through φ5 are set equal
to the prespecified values of r5 and b̂6, giving a set of five equations in
five unknowns. By eliminating φ2 through φ5, this set is reduced to a single
equation in one unknown, φ1, which is solved numerically for all roots in
[−π, π) [22]. The angle φ6 is computed at the end from the position of r4 at
the solution and the known r5, r6, and r7.
Wu and Deem [17] discovered a very useful analogy between the rebridging

problem and inverse kinematics problems involving serial chain manipulators
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Fig. 3.4. Formulation of the trimer bridging problem in generalised coordinates,
followed in [22]. The positions of atoms −1, 0, 1, 5, 6, and 7 are given. The objective
is to determine the torsion angles φ1 through φ6 that allow bridging through the
triplet of skeletal atoms {2, 3, 4} such that all bonds lengths and bond angles are
specified.

in robotics. In the latter, one is concerned with controlling the position and
orientation of an end-effector through appropriate rotations of joints in a
mechanism of links and joints. Figure 3.5 shows a six-degree of freedom serial
chain manipulator with the notation used in robotics. For zero link lengths,
the problem of controlling the end-effector can be mapped directly onto the
bridging problem, as shown in part (b) of the figure. This analogy allowed
Wu and Deem to adopt the analytical solution procedure already developed
in the robotics literature for the general spatial 7-link 7R mechanism prob-
lem [26,27,28] to the general bridging problem in polymers (Fig. 3.1). In this
procedure, the problem is reduced to a 16th degree polynomial equation in
tan(φ1/2), expressing the requirement that an 8 × 8 determinant be zero.
The determinant equation is reformulated and solved for all is solutions as
an eigenvalue problem. Clearly, apart from special “krankshaft” geometries
admitting an infinity of solutions [22], citepanteb, the maximum number of
geometric solutions to the bridging problem is limited to 16. Using the an-
alytical rebridging algorithm in combination with parallel tempering, Wu
and Deem [17] were able to achieve sufficient equilibration in order to study
cis-trans isomerization of proline-containing cyclic peptides.
Whatever the algorithm used to solve the bridging problem, it is impor-

tant to realise that using bridging to describe the local configuration of a
chain system involves a non-metric preserving transformation of coordinates
from Cartesian coordinates of the atoms to the generalised coordinates which
are constrained, specifying the bonded geometry that must be respected dur-
ing the bridging construction. Consider the trimer bridging problem, as de-
scribed in Fig. 3.2 . The configuration of the trimer is ordinarily described in
terms of the Cartesian coordinates of its constituent atoms, i.e. {r3, r4, r5};
we will call this coordinate set I. In using the bridging construction, how-
ever, the trimer is described indirectly through the positions of the surround-
ing atoms and the bond lengths and bond angles that are specified during
the bridging construction. In trimer bridging, one commonly sets the values
{l12, l23, l34, l45, θ1, θ2, θ3, θ4, θ5} independently; we will call this coordinate
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Fig. 3.5. Analogy between the bridging problem and inverse kinematics problems
for serial chain manipulators in robotics. (a) A six-degree of freedom serial chain
manipulator, represented in the Denavit-Hartenberg (D-H) equivalent geometry.
The first pivot is rigidly affixed to the laboratory frame. The end-effector must be
controlled, so as to have prescribed position and orientation. The device consists
of links aij and joints si. Each joint can rotate about its axis, thanks to the pivot
on one of its ends. Pivots are rigidly affixed to the links preceding them. Successive
links and joints are perpendicular. The length of joint si is denoted as Si. Angles
between the directions of successive joints (i, j) are denoted as αij . Dihedral angles
of rotation around the axes of the joints are denoted as θi. (b) Special case of
the six-degree of freedom serial chain manipulator for zero link lengths (aij = 0).
This device is entirely analogous to the six-skeletal bond sequence considered in
the trimer bridging problem, Fig. 3.2. Joint lengths Si, interjoint angles αi−1,i and
dihedral angles θi of the robotics problem become bond lengths li,i+1, bond angle
supplements θi, and torsion angles φi in the polymer problem, respectively. The
figure indicates this mapping, with the robotics notation in quotation marks. (Part
(a) is from [28], with permission).
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set IV. The ratio of volume elements around a given configuration according
to the latter description and according to the Cartesian coordinate descrip-
tion is given by the Jacobian:

JIV→I =
∣
∣
∣
∣

∂(r2, r3, r5)
∂(l12, l23, l34, l45, θ1, θ2, θ3, θ4, θ5)

∣
∣
∣
∣ (3.3)

Detailed derivations useful in the calculation of JIV→I are given in Appendix
C of [21]. The result is

JIV→I = l212l
2
23l

2
34l

2
45 sin θ1 sin θ2 sin θ3 sin θ4 sin θ5

1
B (3.4)

where

B =
∣
∣
∣−l12l23l45[(b̂1 × b̂2)·b̂3][(b̂2 × b̂5)·b̂6][(b̂3 × b̂4)·b̂5] (3.5)

+l12l34l45[(b̂1 × b̂2)·b̂5][(b̂2 × b̂3)·b̂4][(b̂4 × b̂5)·b̂6]

+l23l34[(b̂1 × b̂2)·b̂3]{l12[(b̂2 × b̂3)·b̂4]− l45[(b̂3 × b̂4)·b̂5]}[(b̂4 × b̂5)·b̂6]

+l12l234[(b̂1 × b̂2)·b̂4][(b̂2 × b̂3)·b̂4][(b̂4 × b̂5)·b̂6]

−l223l45[(b̂1 × b̂2)·b̂3][(b̂3 × b̂4)·b̂5][(b̂3 × b̂5)·b̂6]
∣
∣
∣

In the above, b̂i stands for the unit vector along bond (i− 1, i).
The quantity B appearing in (3.4) and (3.5) can also be written as [21,22]

B =
∣
∣
∣
∣
∣

1
(b̂6·e3)

∂(r5, b̂6)
∂(φ1, φ2, φ3, φ4, φ5)

∣
∣
∣
∣
∣

(3.6)

in terms of the Jacobian of transformation from torsion angles to the vari-
ables set in the solution procedure of [22]. Since b̂6 is a unit vector, it can
contribute only two rows to the Jacobian of (3.6), conveniently obtained by
differentiating the components of b̂6 along two of the coordinate axes of the
laboratory frame of reference; e3 is the unit vector along the third coordinate
axis of the laboratory frame.

3.3 Monte Carlo Algorithms Based
on the Bridging Construction

3.3.1 Concerted Rotation

The bridging construction is readily implemented in an intramolecular MC
move aimed at rearranging the internal conformation of chains; such a move,
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which modifies the local conformation of an internal chain section while leav-
ing the preceding and following parts of the chain unaffected, has come to
be known as a concerted rotation (CONROT). In the single driver version of
CONROT, introduced originally in 1993 [22], a chain is selected at random
and a triplet of internal skeletal atoms {2, 3, 4} is picked randomly along its
contour. The triplet {2, 3, 4} is excised and the torsion angle φ0 (the driver
angle) is rotated by a random amount, so as to displace atom 1, which pre-
cedes the excised triplet (see Fig. 3.6a). Skeletal atom 1 is then rebridged to
atoms 5, 6 and the rest of the chain through a trimer bridging construction,
leading to new positions for atoms 2, 3, and 4. The double driver (symmetric)
version of CONROT [29] starts again by excising a triplet of skeletal atoms
{2, 3, 4}. It then proceeds to modify two driver angles, φ0 and φ7, so as to
displace the skeletal atoms 1 and 5, which flank the excised trimer (see Fig.
3.6b). The latter two atoms, in their new positions, are reconnected through a
trimer bridging construction, leading to new positions for the triplet {2, 3, 4}.
Four (five) skeletal atoms are displaced and seven (eight) torsion angles are
turned in the single (double) driver version of CONROT.

Fig. 3.6. Concerted rotation move: (a) single driver, (b) double driver. Skeletal
atoms that change positions are drawn with broken lines. The driver torsion angles
φ0, φ7 are indicated by arrows.
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CONROT can be used easily with both fixed and flexible bond length
and bond angle models. When flexible bond angles π − θ are used, each
contributing a term Vθ(θ) to the Hamiltonian, one can either opt to retain
the old values for all bond angles, relying on some other move (such as the
“flip” [21]) to modify the bond angles, or reselect the bond angles according
to the statistical weight

wθ(θ) =
sin(θ) exp[−βVθ(θ)]

π∫

0
sin(θ) exp[−βVθ(θ)]dθ

. (3.7)

In the case of the double driver move, the latter option would result in a

statistical weight Wθ =
5∏

k=1
wθ(θk) associated with the bond angles selected

for the new configuration.
As mentioned above, the trimer bridging construction can have up to

16 solutions. Although microscopically reversible schemes circumventing the
need for calculating all solutions have been invented [29], it is recommended
that all solutions be found; this enhances the ergodicity of exploring configu-
ration space, and can be accomplished with existing very efficient algorithms
[21,17]. In attempting a CONROT move, one of the solutions may be chosen
at random. It is more advisable, however, to introduce a bias that avoids
excluded-volume overlaps with surrounding atoms and strained conforma-
tions. In other words, one attempts a transition from the original configu-
ration i to the configuration j dictated by one of the Nsoln(i →) different
solutions of the bridging problem according to a weight

Wbridge(i→ j) = exp[−βVbridge(j)]
Nsoln(i→)∑

k=1
exp[−βVbridge(k)]

(3.8)

A good choice for the bias potential Vbridge incorporates a hard-sphere in-
teraction, based on the assignment of a hard-sphere diameter to all atoms
displaced by the move, and the torsional potential associated with all torsion
angles modified [29]. An efficient strategy is to first screen all solutions for
excluded-volume overlaps, then screen the remaining solutions for excessive
torsional energy, and finally pick one of the surviving solutions with proba-
bility proportional to the Boltzmann factor of the torsional energy [29]. If no
solution survives the excluded volume overlap and torsional screenings, i.e., if
exp[−βVbridge(k)] � 0 for all k, then the move must be discarded. The same
must be done in those rare cases where the original configuration does not
pass the overlap and torsional screenings. The screening for excluded-volume
overlaps can be made efficient by use of a screening overlap list [21].
To ensure microscopic reversibility, all solutions to the reverse bridging

problem, starting from the trial configuration j, must be determined, cor-
responding to equal and opposite changes in the driver angles. The original
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configuration i must, of course, be found among the solutions of the inverse
problem, along with an additional Nsoln(j →) − 1 “sister” solutions where,
generally, Nsoln(j →) �= Nsoln(i→).
The attempted CONROT move from configuration i to configuration j is

accepted with probability

Paccept(i→ j) = min
[

1,
α(j → i) exp[−βV(j)]J(j)
α(i→ j) exp[−βV(i)]J(i)

]

(3.9)

where V(k) is the total potential energy function of configuration k; J(k) is
the Jacobian JIV→I of (3.4), evaluated at configuration k; and α(i → j) is
proportional to the probability of attempting a move from configuration i to
configuration j. For the flexible bond angle scheme described above,

α(i→ j) =Wθ(j)Wbridge(i→ j) (3.10)

It is advisable to test the acceptance scheme on a simple problem first, to
make sure that the Jacobian and bias terms have been incorporated correctly.
A system of independent “phantom chains”, i.e. chains with the same bond
lengths and bond angle potentials as the system of interest but devoid of any
torsional potential and nonbonded interactions, constitutes a convenient test
system. For such a test system, the distribution of torsion angles should come
out uniform [22].
CONROT can be used in any constant-temperature ensemble (canonical,

isothermal-isobaric [22,30,31], grand canonical, Gibbs, f1N2PT [32]). The
original application [22] involved NPT simulations of oligomeric liquids of
polyethylene in a united-atom representation using a combination of CON-
ROT and reptation moves, but since then the move has been used for many
other polymers, including atactic, isotactic, and syndiotactic polypropylene
[22,33], cis-1,4 polyisoprene [34,35], trans-1,4 polyisoprene [36], cis-1,4 polybu-
tadiene and 1,2 polybutadiene [36]. The success rate of CONROT moves
with a maximum change of 20◦ in the driver angle(s) is around 20% at usual
polymer melt temperatures [22,21]. In the area of biological macromolecules,
CONROT-based algorithms have been used very effectively by Deem and col-
laborators [25,17] in sampling equilibrium conformations of cyclic peptides,
a feat very difficult to accomplish with MD.

3.3.2 Directed Internal Bridging

Uhlherr [37], Wick and Siepmann [38], and Uhlherr et al. [39] have devel-
oped combinations of the CONROT and CB algorithms, termed “internal
configuration bias” (ICB), “self-adapting fixed end point configuration bias”
(SAFE-CB), and “directed internal bridging” (DIB), respectively. In these
algorithms, two bonds are rebridged not by a chain section of predetermined
internal geometry (e.g., trimer), but through a flexible chain section started
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off of one of the bonds and grown towards the other in a bond–by–bond fash-
ion through a CB scheme. Here we briefly describe Uhlherr’s DIB scheme
[39].
The l skeletal atoms constituting the bridging part of the chain are split

into a set χ of l − 3 atoms, which are regrown by CB, and another set ψ of
3 atoms, which are placed by the trimer bridging construction to establish
the final connection. The bias potential VCB(χ) used in regrowing the set
χ includes a fictitious potential which attracts each regrown atom k in χ
towards a suitable “attractor” site m, usually chosen as the old position of
the first atom in the bridging trimer. A finitely extensible nonlinear elastic
(FENE) spring potential is used for this purpose, of the form

VFENE(rkm) = −12CR
2
km ln

[

1−
(
rkm

Rkm

)2
]

(3.11)

with rkm being the spatial distance between the regrown atom and the at-
tractor site, and Rkm = 1.275(m+ 1− k) Å.
A DIB move from configuration i to configuration j is accepted with

probability

Paccept(i→ j) =

min
[

1,
WCB(χj) exp[βVCB(χj)]α(χi → ψi) exp[−βV(j)]J(ψj)
WCB(χi) exp[βVCB(χi)]α(χj → ψj) exp[−βV(i)]J(ψi)

]

(3.12)

where WCB and VCB are the Rosenbluth weights and bias potentials used in
regrowing part χ of the bridging chain by configurational bias in the forward
(subscript j) and backward (subscript i) direction [see (3.2)]; α are the statis-
tical weights used in the trimer bridging construction of part ψ of the solution
in the forward (subscript j) and backward (subscript i) direction [see (3.10)];
J are the Jacobian determinants associated with the bridging construction
of ψ in the forward (subscript j) and backward (subscript i) direction [see
(3.4)]; and Vi, Vj are the total potential energies of the initial and final con-
figuration, respectively, their Boltzmann weights in the acceptance criterion
arising from the probability density of the simulated ensemble.
Combined CONROT and CB schemes have been used in simulating long

cyclic alkane molecules in vacuo [37], alkane liquids [38] and polyethylene
melts [39]. Uhlherr et al. [39] have presented a detailed analysis of the com-
putational efficiency of DIB, concluding that DIB is comparable with, but
not superior, to the simpler CONROT; the computational overhead of CB is
not counterbalanced by better sampling of configuration space, contrary to
what happens in the case of DEB, discussed below.

3.3.3 End-Bridging in the Nnμ∗PT Ensemble

CONROT is very useful in inducing local configurational rearrangements in
atomistic models of chain polymers. It is not sufficient, however, for equi-
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librating structural features at large length scales, such as the end-to-end
distance and the radius of gyration, in systems of long chains. This became
obvious in the original NPT simulations of oligomeric polyethylene melts
with a MC algorithm using CONROT and reptation moves; the algorithm
could fully equilibrate a C24, but not a C78 melt [30].
The need to equilibrate large length-scale structural features led to the

development of a “bolder”, intermolecular move based on the bridging con-
struction, which is termed “end-bridging” (EB) [29]. As shown in Fig. 3.7,
this move involves two chains, c and c′. The triplet of skeletal atoms {2, 3, 4}
is excised from the chain c, generating two new chain ends, 1 and 5. Next, the
bridging construction is invoked to generate a new triplet of atoms {2′, 3′, 4′},
which connects the end 1′ of chain c′ to atom 5 of chain c. The end result
is a dramatic change in connectivity: Chain c′ (the “attacking” chain) has
appended 5, 6, and the subsequent part of chain c though the newly con-
structed trimer {2′, 3′, 4′}. Chain c (the “victim” chain), on the other hand,
has been shortened, now terminating at 1. Although the scheme is illustrated
with a trimer, one could clearly have excised a larger internal segment and
repositioned it as a bridge of predetermined internal geometry. The bridging
construction guarantees that the detailed atomistic geometry of the chains is
preserved.

Fig. 3.7. Schematic of the end-bridging move. Initial configuration is shown on the
left, and final configuration on the right. Excised atoms are outlined with broken
lines and newly constructed atoms as filled circles. All other atoms (open circles)
remain unchanged.

Clearly, an end-bridging move modifies the lengths of the chains partic-
ipating in it. Thus, the MC simulation must be cast in an ensemble that
allows chains of various lengths to be present, i.e. some polydispersity in the
polymer. An appropriate “semigrand” ensemble was formulated by Pant and
Theodorou [29]. They considered the polymer as a mixture of various chain
species. Starting from the differential expression for the Helmholtz energy of
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such a mixture and introducing variable substitutions and Legendre transfor-
mations, they arrived at a fundamental equation, and therefore a partition
function, describing the mixture in terms of the following thermodynamic
variables: the total number of chains, N , the total number of monomer units,
n, the temperature T , the pressure, P , and a set of relative chemical poten-
tials, μ∗k, for all chain species k but two (k1, k2), which are taken as reference
species. Each relative chemical potential μ∗k is defined in terms of the actual
chemical potentials of the species as

μ∗k = μk −
(
Xk −Xk1

Xk2 −Xk1

)

μk2 −
(
Xk −Xk2

Xk1 −Xk2

)

μk1 (3.13)

with Xl being the number of monomer units in each chain of species l. The
probability density of the Nnμ∗PT ensemble in configuration space is [29]

ρNnμ∗PT ( V, r; connectivity) = (3.14)

const exp

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β

m∑

k = 1
k �= k1, k2

μ∗kNk − βPV − βV(r; connectivity)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where Nk stands for the number of molecules of species k, and m is the
maximum number of species that may be present. V is the system volume
and and r is the vector of coordinates of all atoms, specifying the microscopic
configuration of the system.
To facilitate the implementation of the EB move, special lists are main-

tained of candidate atoms for bridging (e.g. atom 5 in Fig. 3.7 ) around each
chain end (e.g. end 1′ in Fig. 3.7 ). The criterion for inclusion in these “end-
bridging lists” is that the candidate atom must be an internal segment of
another chain within a maximal “bridging” distance, beyond which solution
of the bridging problem is impossible; for united-atom polymethylene, this
maximal distance is taken equal to the all-trans end-to-end distance of the
heptamer {0, 1, 2, 3, 4, 5, 6} with all bond angles π−θ opened to a value whose
equilibrium probability is less than 10−3 at the prevailing temperature. The
number of bridgeable neighbours Nbridge is continuously updated for each
chain end in the system.
The EB move is initiated by randomly selecting the “attacking” chain

end (atom 1′ in Fig. 3.7 ). One of the Nbridge bridgeable neighbours of the
attacking end is then selected at random (atom 5 in Fig. 3.7 ). One then pro-
ceeds to bridge 0′1′ and 56, forming atoms 2′, 3′, and 4′. As discussed above,
the bridging construction involved in EB generally has multiple solutions. All
solutions are determined and one of them is chosen after overlap screening
and weighting by the Boltzmann factor of the torsional potential, as in the
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case of CONROT [compare (3.8), (3.10)]. The probability of accepting such
an EB move from the initial configuration i to the final configuration j is
then

Paccept(i→ j) = min

⎡

⎢
⎢
⎣1,

1
Nbridge(j → i)α(j → i)ρ

Nnμ∗PT (j)J(j)

1
Nbridge(i→ j)α(i→ j)ρ

Nnμ∗PT (i)J(i)

⎤

⎥
⎥
⎦ (3.15)

As in the case of CONROT, the inverse bridging problem, starting from
the final configuration j, must also be solved. In the acceptance criterion of
(3.15), the terms involving Nbridge account for the random selection of one
of the bridgeable neighbours of the attacking chain end when the move is
attempted in the forward (denominator) and in the reverse (numerator) di-
rection. The remaining terms are entirely analogous to the ones appearing
in the corresponding acceptance criterion for CONROT, (3.9). The α terms
account for the bias in attempting the move according to a particular solu-
tion, among all solutions of the geometric bridging problem, in the forward
(denominator) or reverse (numerator) direction. The quantities symbolised
by ρ are the equilibrium probability densities of the ensemble being simulated
in the destination (numerator) and in the origin(denominator) state, while
the quantities symbolised by J are the Jacobians of transformation from the
generalised coordinates used in the bridging construction to Cartesian coor-
dinates [see (3.4)] in the destination (numerator) and origin (denominator)
states.
By construction, the number-average chain degree of polymerisation of

the polymer is X̄ = n/N . The profile of relative chemical potentials μ∗

controls the chain length (molecular weight) distribution at equilibrium. Pant
and Theodorou [29] have considered several μ∗ profiles and calculated the
expected distributions. Setting relative chemical potentials to −∞ for all
chain species shorter than Xmin, and equal to zero for Xmin and longer,
produces a truncated Flory number distribution function, which is zero below
Xmin and falls exponentially with X above Xmin. Setting relative chemical
potentials to zero for all chain lengths within a symmetric window centred at
X̄ and to −∞ outside that window produces a flat (box) number distribution
within the window. On the other hand, setting relative chemical potentials
equal to a parabolic function of the chain length with maximum at X̄ within
a symmetric window centred at X̄ and to −∞ outside that window, produces
a truncated Gaussian number distribution within the window. As seen in Fig.
3.8, these expectations are confirmed by EBMC simulations.
The success rate of EBMC moves is normally very low (approximately

0.1% for united-atom polyethylene [21] and even lower for polymers with more
complex chemical constitution). Nevertheless, the move is extremely efficient
in equilibrating the long-length scale structural features of dense, long-chain
systems. Assuming that chains retain their identity during an EB move as
shown in Fig. 3.7 , the centre of mass of a given chain executes a random walk
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Fig. 3.8. Chain length distributions in an alkane liquid with mean chain length
X̄ = 24, obtained by modulating the profile of relative chemical potentials. Lines
depict theoretical expectations from the Nnμ∗PT ensemble, while dash-dotted lines
are results from EBMC simulations at 450 K and 0.1 MPa. (a) truncated Flory
distribution (Xmin = 12). (b) Flat distribution in the window of chain lengths
[18, 30]. (c) Truncated Gaussian distribution in the window of chain lengths [18, 30].
(Reproduced from [29], with permission).
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as a result of the chain appending or relinquishing mass in the successive EB
moves in which it participates. Let us consider homologous melts wherein the
shape of the chain length distribution is retained constant (i.e., the number
distribution of chain lengths X is identical when plotted as a function of
X/X̄), but the mean chain length X̄ is changed systematically. In a single
successful EB move, the centres of mass of the two chains participating in the
move will be displaced by a distance which scales as the overall mean spatial
extent of chains, i.e. as the root mean square radius of gyration, hence as
X̄1/2 [21]. The remaining (N − 2) chains will not be affected; hence, the
mean square displacement of the centres of mass taken over all chains in a
single move will scale as

〈
(Δrcm)2

〉
EBmove ∝ X̄/N . Within CPU time t, with

τ being the mean CPU time per attempted MC move and fEB the frequency
of attempting EB moves, there will be fEBt/τ EB moves attempted, of which
fEBpacct/τ will be accepted, where pacc is the rate of acceptance of EB moves.
The mean square displacement of chain centres of mass during time t will be
〈
(Δrcm)2

〉 ∝ fEBpacc
t

τ

X̄

N
. Therefore, the “self-diffusivity” of chain centres

of mass with respect to CPU time as a result of EB moves will be D ∝〈
(Δrcm)2

〉

t
∝ fEBpacc

1
τ

X̄

N
. One measure of configurational rearrangement at

the level of entire chains is the CPU time t0 required for the centre of mass
of chains to be displaced by a distance commensurate with the end-to-end
distance R. This is

t0 ∝ R
2

D
∝ X̄

fEBpacc
1
τ

X̄

N

(3.16)

or
t0 ∝ τ

fEBpacc

n

X̄
(3.17)

A more detailed analysis, taking into account the distribution of chain lengths,
leads to [21]

t0 ∝ τ n

fEBX̄Δ2.5 (3.18)

where Δ is the width of the chain length distribution reduced by the mean
chain length.
As expected, t0 grows linearly with the system size n. Narrowing the

molecular weight distribution increases t0, as there are less chances for an
attempted end-bridging move to lead to acceptable chain lengths. The re-
markable feature of (3.18) is that, for given system size and shape of the
molecular weight distribution, t0 is inversely proportional to X̄. In other
words, EBMC becomes more efficient in rearranging chain centres of mass
as the mean chain length increases. This is in sharp contrast to actual chain
dynamics, whereby the maximal relaxation time of the melt grows with X̄
as X̄2 (Rouse regime) or X̄3.4 (reptation regime). Herein lies the power of
EBMC in equilibrating long-chain systems.
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Figure 3.9 displays the mean square displacement of the centre of mass
as a function of CPU time in five model polyethylene melts of the same
size and the same reduced molecular weight distribution (flat distribution,
polydispersity index 1.08). CPU times in these figures are on a SGI 64-bit
R10000 processor. Clearly, the model with X̄ = 500 displays the largest
centre-of-mass displacement. In Fig. 3.10, the CPU time t0 corresponding to
the same five runs is displayed as a function of X̄ in log-log coordinates. At
large X̄, a slope of −1 is reached, confirming the scaling analysis that led to
(3.18).
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Fig. 3.9. Mean-square displacenent of the centre of mass of chains,〈
[rcm(t) − rcm(0)]2

〉
, as a function of the CPU time t, obtained from EBMC sim-

ulations of five polyethylene melts with a flat molecular weight distribution and
polydispersity index 1.08. The number of methylene and methyl units in the simu-
lation box is n = 4000 in all cases and the simulation conditions are T = 450K and
P = 1 atm. The mean molecular weights X̄ from bottom to top are 78, 156, 200, 400,
and 500, as indicated in the legend. (Reproduced from [21], with permission).

Another measure of overall conformational rearrangement is the rate at
which a unit vector u = R/|R|, directed along the end-to-end vector of a
chain, loses memory of its original orientation. In Fig. 3.11, autocorrelation
functions 〈u(t)·u(0)〉 obtained with EBMC are shown as functions of the
CPU time t for the five melt systems discussed above. The decorrelation is
complete in all cases but one. Remarkably, the decorrelation is faster the
larger the mean molecular length X̄.
The equilibration of local structural features achieved by EBMC is also

very good, thanks mainly to the reptation and CONROT moves accompany-
ing EB, but also to the trimer displacements brought about by EB. This is
readily seen by comparing mean square displacements of individual chain seg-
ments as functions of CPU time for EBMC, CBMC, and MD algorithms [21].
Inevitably, with the scaling of (3.18) for large-scale structural features, the
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Fig. 3.10. CPU time t0 required for the mean-square displacement of chain centres
of mass in united-atom polyethylene melts simulated with EBMC to reach the
equilibrium mean-square end-to-end distance < R2 > versus average chain length
X̄ on a log-log plot. The size of all model systems is n = 4000 and the chain
length distribution is flat with polydispersity index 1.08 in all cases. The simulation
conditions are T = 450K and P = 1 atm. (Reproduced from [21], with permission).

equilibration of local structural features will become rate-controlling for high
molecular weights, i.e. equilibrating the polymer becomes no more difficult
than equilibrating a low-molecular weight analogue. This is seen characteris-
tically in the simulations of C6000 discussed by Uhlherr et al. [40].
In long-chain, dense polymer systems where chain ends are scarce, the

number of feasible candidate EB moves available at any time is relatively
small. If the frequency of EB relative to other moves is high, it is possi-
ble that successive accepted EB moves may reverse each other, with little
configurational rearrangement having occurred in-between. Such “shuttling”
behavior is detrimental to equilibration. Introducing a good proportion of
reptation moves greatly helps in avoiding this undesirable situation, as repta-
tion induces drastic changes in the configuration of chain ends. The shuttling
problem can also be overcome by resorting to directed bridging algorithms.
In systems with a bulky repeat unit, where reptation and directed bridging
may have very low probabilities of acceptance, shuttling can be suppressed
by combining EB with parallel tempering. Double bridging and intramolec-
ular double rebridging, which involve exclusively internal segments and no
chain ends, are very effective in eliminating shuttling. All these algorithmic
developments are discussed below.
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Fig. 3.11. Decay of the chain end-to-end vector orientational autocorrelation func-
tion 〈u(t)·u(0)〉 with CPU time t as obtained from EBMC simulations of five united-
atom polyethylene melts. The mean chain lengths X̄ are indicated in the legend.
The size of all model systems is n = 4000 and the chain length distribution is flat
with polydispersity index 1.08 in all cases. The simulation conditions are T = 450K
and P = 1 atm. (Reproduced from [21], with permission).

3.3.4 Directed End-Bridging

Uhlherr et al. [39] developed a “directed end-bridging” (DEB), which com-
bines and bridging and configuration bias. The relation of DEB to EB is
identical to the relation of DIB to CONROT, discussed above. A flexible
intermolecular bridge of length l > 3 is constructed, after elimination of a
section of equal length from the victim chain. The first section χ of the bridge,
containing l−3 skeletal atoms, is built sequentially, one atom at a time, using
a CB random walk. The CB bias potential contains attractive terms which
direct χ towards the stationary chain section to which it will be bridged. The
last trimeric section ψ of the bridge is built using the trimer bridging con-
struction, as described in Sect. 3.3.3. The acceptance rate from configuration
i to configuration j is given by (3.12), discussed in conjunction with DIB,
with the modifications that led from (3.9) to (3.15). Uhlherr [39] has con-
ducted a detailed study of the efficiency of DEB and of its combinations with
CONROT, DIB, and reptation as a function of the bridge length l. Relative to
EB, each DEB move displaces a larger number of atoms and has a somewhat
higher acceptance ratio, but costs more CPU time. Much more significant for
equilibration, however, is that DEB suppresses “shuttling” relative to simple
EB. As a result, DEB enhances performance in equilibrating long-length scale
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structural characteristics by an additional order of magnitude relative to EB
[39].

3.3.5 Sampling of Oriented Chains: NnbTμ∗α MC Simulations

MC simulations employing dynamically unphysical moves can, of course, not
provide direct dynamical information. They can, however, be used to compute
free energies (potentials of mean force) with respect to a chosen set of slowly
evolving structural variables directly from atomistic information. Such free
energies, and their constituent configurational energy and entropy functions,
are valuable as input to coarse-grained theories and simulation approaches for
the description of dynamical behaviour under equilibrium and nonequilibrium
conditions. In the case of polymers, where relaxation times are exceedingly
long by MD standards, the avenue of combining MC and coarse-grained (e.g.,
irreversible thermodynamics-based) formulations seems more promising than
direct MD simulation.
Mavrantzas and Theodorou [42] used EBMC to calculate the free energy

of oriented polymer melts, resulting from the imposition of a steady-state
flow field with strain rate smaller than or equal to the longest relaxation
time of chains (Deborah number ≤ 1). Considering melts with chain length
below that corresponding to the onset of entanglements, they introduced the
conformation tensor c̃ as a coarse-grained descriptor of the overall shape of
chains:

c̃ = 3
〈

RR
< R2 >0

〉

(3.19)

where R, as above, is the end-to-end vector of a chain, < R2 >0 is the mean
square end-to-end vector under equilibrium unperturbed conditions, and the
outer average is taken over all chains in the system. As defined, c̃ is equal to
the unit tensor in a quiescent melt at equilibrium; it departs from unity in a
flow field of Deborah number comparable to 1, where chains do not have the
time to get back to their unperturbed conformations.
Following irreversible thermodynamics-based approaches to polymer flow

[41], the free energy per chain of such a melt, A/N , was postulated to be a
function not only of the mass density ρ and the temperature T , but also of
the conformation tensor:

A

N
=
A

N
(ρ, T, c̃). (3.20)

It is convenient to introduce the conjugate thermodynamic variables associ-
ated with ρ and c̃ in the fundamental representation of (3.20):

b = − ∂A
∂V

∣
∣
∣
∣
N,T,c̃

= ρ2
[
∂

∂ρ

A

N
(ρ, T, c̃)

]

T,c̃

NA

M
(3.21)

and

αγδ =
1
kBT

[
∂

∂c̃γδ

A

N
(ρ, T, c̃)

]

T,ρ,c̃[γ,δ]

(3.22)
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where M is the mean molecular weight of the polymer, NA is Avogadro’s
number, the indices γ, δ ∈ {1, 2, 3}, and the notation c̃[γ,δ] signifies that all
other components of the tensor c̃ remain constant except c̃γδ.
Under equilibrium conditions, the scalar field b is merely the pressure.

The tensorial “orienting field” α couples to the conformation tensor, inducing
orientation; it is dictated by the type and strain rate of the flow.
From a general relation expressing the stress τ in terms of the derivative

of the free energy with respect to the deformation gradient tensor, one arrives
at the expression

τ = −bI+ 2kBT N
V
(c̃·α) (3.23)

The stress in the flowing melt is therefore readily expressed in terms of b, c̃,
and α.
Mavrantzas and Theodorou [42] developed a MC procedure for extracting

c̃, A (relative to that of the equilibrium quiescent polymer), and τ under
given T , b and α from atomistic simulations. The polymer is allowed to
have some polydispersity, which is controlled through the profile of chemical
potentials μ∗, as discussed in Sect. 3.3.3. Thus, the simulation is conducted
in a NnbTμ∗α ensemble, whose probability density is

ρNnbTμ∗α(V, r; connectivity) = const × (3.24)

× exp

⎡

⎢
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⎣

−β

⎛

⎜
⎜
⎜
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−
m∑

k = 1
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μ∗kNk + bV + V(r; connectivity)− kBT
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⎞

⎟
⎟
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⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The probability density of (3.24) is very similar to that of (3.14), the only
differences being the use of the scalar field b in place of P and the extra energy

term −kBT
N∑

k=1
α:c̃k, which couples the orienting field with the conformation

tensors c̃k of individual chains in the system. The latter are defined through
(3.19) sans the outer average, with R replaced by the end-to-end vector Rk

of an individual chain k.
The oriented chain simulation is conducted with EBMC, using EB, CON-

ROT, reptation, and local “flip” and end-rotation moves. The acceptance
criterion for EB moves is given by (3.15) with the probability density terms
replaced by those of (3.24). For each system studied, a series of simulations is
conducted with b and α chosen so as to correspond to flows of increasing in-
tensity. The conformation tensor c̃ and, therefore, the stress tensor τ [(3.23)]
are obtained as output from the simulation. The free energy A/N relative to
the equilibrium quiescent state is obtained from the whole series of simula-
tions by thermodynamic integration [21]. Excellent numerical performance of
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the EBMC algorithm was noted in sampling oriented united-atom polyethy-
lene systems [42,43,44]. In sampling oriented melts, one should be especially
careful in establishing that the results are independent of model system size.
If the simulation box is small, interactions between different images of the
same chain may develop in the oriented state, artificially enhancing the ori-
entation.
Mavrantzas and Öttinger [45] reformulated this thermodynamic approach

and associated MC simulation strategy for oriented melts on the basis of
Grmela and Öttinger’s general equation for the nonequilibrium reversible-
irreversible coupling (GENERIC). By analyzing the structure of the result-
ing GENERIC equation for spatially homogeneous, time-independent flows,
a firm kinematic interpretation was attributed to the orienting field α. This
interpretation depends on the specific coarse-grained viscoelastic model as-
sumed. For the Upper-Convected Maxwell and FENE-P models, it is shown
that

α =
1
2
λH γ̇ (3.25)

with λH being the maximum relaxation time of chains and γ̇ being the rate
of strain tensor of the flow [45]. On the other hand, the stress equation (3.23),
in terms of b, c̃, and α, is perfectly general for all single conformation ten-
sor models. Mavrantzas and Öttinger have also formulated GENERIC-MC
approaches for mapping atomistic models to multiple-conformation tensor
viscoelastic models incorporating higher modes in the coarse-grained descrip-
tion, such as the Rouse model. Results from these formulations will be dis-
cussed in the Applications section.

3.3.6 Scission and Fusion Algorithms for Phase Equilibria

Being able to predict phase equilibria in polymer systems is very impor-
tant from the technological point of view. At the same time, it constitutes a
great challenge for molecular simulation. Commonly used simulation meth-
ods (Widom test particle insertions, grand canonical and Gibbs ensemble
Monte Carlo) rely upon insertions/deletions or exchanges of molecules be-
tween phases, and these result in almost certain overlap when the molecules
are large and the phases are dense, even if configurational bias techniques
are invoked. Good reviews of the state of the art in simulations of phase
equilibria are available [47,48].
Often one is interested in the phase equilibria of systems composed of

chemically similar macromolecules. In such systems, connectivity-altering
moves can be used to effect pseudochemical interconversions among the macro-
molecular species, thereby dramatically accelerating convergence to the equi-
librium composition, while at the same time entirely circumventing the in-
sertion problem.
Zervopoulou et al. [49] illustrated this in the problem of predicting the

solubilities of C4 to C20 linear alkanes in molten polyethylene. Allowing some
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polydispersity in the polymer, which they proved to be inconsequential for the
properties of interest, they introduced two new MC moves, scission and fusion
(see Fig. 3.12), to generate and eliminate alkane molecules in the polymer
mass. In a scission move, one randomly selects a polymer chain end and
then cuts the chain near that end in order to create an oligomeric (alkane)
molecule of X1 skeletal atoms. The oligomeric molecule is created through
excision and elimination of a trimer from the original chain, which is thereby
reduced in length from from Xk to Xk − X1 − 3. In a fusion move, one
randomly selects an oligomer molecule in the system and then connects one
of its ends to an end of a long chain by construction of a trimer bridge. The
oligomer is thereby eliminated and the chain increases in length from Xk

to Xk + X1 + 3 skeletal atoms. The bridging is performed by choosing one
of the Nbridge bridgeable neighbouring chain ends to the attacking oligomer
end from a list, choosing the bond angles θ according to a weight Wθ, and
selecting one of the multiple solutions of the bridging construction according
to a weight Wbridge, exactly as described in conjunction with CONROT and
EB. In addition to scission and fusion, flip, reptation, CONROT and EB
moves involving both the polymer and the oligomer, and volume fluctuation
moves are used to equilibrate the configuration.

Fig. 3.12. Schematic of the scission (top) and fusion (bottom) moves. Segments of
the long polymer chain and of the oligomer are shown in black and grey, respectively.
The trimer bridge eliminated or formed is shown with open symbols.

Zervopoulou et al. [49] developed a new ensemble to implement scission
and fusion moves. In this ensemble, dubbed the f ′1Npn0PTμ∗, the pressure
P , the temperature T , the total number of chains Np, and the profile of rela-
tive chemical potentials μ for all long-chain species but two are kept constant,
as in the NnPTμ∗ ensemble discussed in Sect. 3.3.3. In addition, the num-
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ber n0 = (X1 + 3)N1 +
m∑

k=2
XkNk, species 1 being the oligomer and 2, . . . ,m

being the chain species constituting the polymer, is held constant. Physi-
cally, this is the number of skeletal atoms that would result if all oligomer
molecules present in a configuration were connected to polymer molecules
through trimer bridges. Finally, a very important macroscopic parameter of
the ensemble is the modified fugacity of the oligomer, f ′1. This is related to
the oligomer fugacity f1 and to the fugacities f , excess chemical potentials
μex and mole fractions x of the reference species k1 and k2 used in defining
μ∗ through

f ′1 = f1 exp
[

−β(X1 + 3)
μex

k1
− μex

k2

Xk1 −Xk2

]

×

×
(
xk2

xk1

)(X1+3)/(Xk1−Xk2 )
(
I intra
k1

I intra
k2

)(X1+3)/(Xk1−Xk2 )

(3.26)

=
f1

(
fk1/I

intra
k1

fk2/I
intra
k2

) X1+3
Xk1

−Xk2

where I intra
k symbolizes the integral of the Boltzmann factor of the intramolec-

ular potential energy (excluding any bond length terms, with all bonds at
their equilibrium lengths) over all orientations and internal configurations of
a single chain of species k in the ideal gas state. Without loss of generality,
a flexible chain model with bond stretching force constants going to infinity
was used for the derivation.
Physically, f ′1/I

intra
1 measures the chemical potential of oligomer molecules

in relation to an equivalent mass of polymer in the (pseudo)chemically re-
acting system considered. If one increases (decreases) the f ′1 value used in
the simulation, the system at equilibrium responds by generating more (less)
oligomer from the polymer. On the other hand, from the set value of f ′1
one can calculate the actual fugacity f1 of the oligomer through (3.26). The
mole fractions xk1 and xk2 are readily obtainable from the molecular weight
distribution of the polymer and the ratio of intramolecular configurational
integrals is calculable by CBMC integration. It is convenient to choose the
reference chain species k1 and k2 such that Xk2 − Xk1 = 1; The quantity
μex

k1
− μex

k2

Xk1 −Xk2

then becomes the excess segmental chemical potential of species

k1 and is readily calculable through virtual augmentations of k1-type chains
in the bulk [50,32]. Thus, a series of f ′1Npn0PTμ∗ simulations can yield the
concentration of oligomer molecules as a function of the oligomer fugacity f1,
i.e., a sorption isotherm for the oligomer in the polymer.
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The probability density of the f ′1Npn0PTμ∗ ensemble has been worked
out by Zervopoulou et al. [49]. With the configuration space described in
terms of the generalised coordinates s0 (positions of all chain starts scaled
with respect to the box edge length), ψ (Eulerian angles specifying the ori-
entation of the first trimer of each chain), θ (bond angle supplements), and
φ (torsion angles), it is

ρ f ′
1Npn0PTμ∗

(N1, . . . , Nm, V ; s0,ψ,θ,φ) =

= const.
1
N1!
V Np

⎡

⎣
m∏

k=1

Nk∏

l=1

⎧
⎨

⎩
sinψ(k)

l

Xk−2∏

q=1

(
sin θ(k)

ql

)
⎫
⎬

⎭

⎤

⎦
(
βf ′1V
I intra
1

)N1

× (3.27)
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The acceptance rate of a scission move carried out on a chain of Xk skeletal
atoms, leading the system from configuration i to configuration j, is

Paccept(i→ j) = min
{

1,
1

N1(i) + 1
Np

Nbridge(j → i)Wθ(i)Wbridge(j → i) (3.28)

βf ′1
I intra
1

(
l212l

2
23l

2
34l

2
45
)
i

J(i)
exp
[
β(μ∗Xk−X1−3 − μ∗Xk

)− βΔV]
}

The acceptance rate of a fusion move carried out between a chain of Xk

skeletal atoms and an oligomer, leading the system from configuration i to
configuration j, is

Paccept(i→ j) = min
{

1, N1(i)
Nbridge(i→ j)

Np

1
Wθ(j)Wbridge(i→ j) (3.29)

1
βf ′1
I intra
1

J(j)
(l212l

2
23l

2
34l

2
45)j

exp
[
β(μ∗Xk+X1+3 − μ∗Xk

)− βΔV]
⎫
⎪⎪⎬

⎪⎪⎭

ΔV is the change in potential energy (excluding bond length terms, with all
bonds at their equilibrium lengths) brought about by the move. In the above
equations, all symbols have the meanings attributed to them in Sects. 3.3.1
and 3.3.3. It is remarkable that the probability density and the acceptance
criteria show no dependence on the energy of dissociation of bonds, on the
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stiffness of bond stretching constants, or on the thermal wavelength of atoms.
All these contributions are lumped in the constant of (3.27).
Figure 3.13 displays the evolution of C10 weight fraction with CPU time in

a polyethylene melt of mean molecular length C78 and polydispersity index
1.08 at 458 K, for comparable values of the fugacity f1. The superiority
of the scission-fusion method over the more conventional method, involving
insertions and deletions of alkane molecules, in equilibrating the composition
of the system is evident. For a C20 the conventional method is unable to
provide a reliable estimate of the solubility, while the scission-fusion method
continues to perform admirably well [49]. This is discussed further below, in
the applications section.

Fig. 3.13. Performance of two different methods in equilibrating the weight frac-
tion of C10 dissolved in a polyethylene melt at 458 K under given values of the
fugacity f1. Method 1 is a MC simulation in the f1NpnPTμ∗ statistical ensemble,
i.e. in a hybrid isothermal-isobaric ensemble that is grand canonical with respect
to the alkane and semigrand with respect to the polymer; it employs CB insertions
and deletions of alkane molecules. Method 2 is a MC simulation in the f ′

1Npn0PTμ∗

statistical ensemble, which employs scission and fusion moves. CPU times are on
an R10000 SGI workstation at 298 MHz. (Reproduced from [49], with permission).

3.3.7 Double Bridging and Intramolecular Double Rebridging

End-bridging Monte Carlo requires a finite degree of polydispersity in order
to function. While this is not necessarily a shortcoming in modelling in-
dustrial polymers, which are typically polydisperse, an ability to equilibrate
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strictly monodisperse chain systems is desirable from the point of view of
comparing simulation predictions against theory, or against experiments on
anionically synthesised model systems. Also, EBMC relies on the presence of
chain ends and thus does not lend itself for simulating dense phases of chains
with complex nonlinear architectures.
Very recently, Karayiannis and Mavrantzas [51] developed two new connec-

tivity-altering moves that are not subject to these shortcomings. The moves
are based on the construction of two bridging chain sections (usually trimers)
among four properly chosen internal skeletal atoms belonging to one or two
chains in the system. The moves have been termed “double bridging” (DB)
and “intramolecular double rebridging” (IDR).
Figure 3.14 presents a schematic of the DB move. An internal skeletal

atom i of chain ich attacks an internal skeletal atom j of chain jch; the
trimer {ja, jb, jc} adjacent to j is excised and a new trimer bridge {j′a, j′b, j′c}
is formed, connecting i and j. At the same time, the internal skeletal atom
j2, which is adjacent to the excised trimer on chain jch, attacks internal
skeletal atom i2, four skeletal atoms away from i on ich; the trimer {ia, ib, ic}
is excised and a new trimer bridge {i′a, i′b, i′c} is built between j2 and i2.
The chains obtained after the move, ich′ and jch′, have completely different
conformations from those of ich and jch. Given two skeletal atoms i and j
along the backbones of chains ich and jch, respectively, there are in general
four different ways in which DB can be performed, depending on which two
of the four trimers adjacent to j and i are excised. In a monodisperse system,
if i and j are appropriately positioned relative to the ends of ich and jch,
one of these four DB moves preserves monodispersity (see Fig. 3.14).
Figure 3.15 presents a schematic of the IDR move. Here, both trimer

bridging constructions are performed between skeletal atoms belonging to
the same chain. Given two bridgeable internal skeletal atoms on the same
chain, there are two ways in which the move can be attempted. IDR modifies
the internal configuration of the chain, but leaves its ends unaltered. This
internal reconfiguration aids in generating new possible sites for DB, so the
two moves operate synergistically in long-chain systems.
The acceptance rule for DB and IDR moves is similar to (3.15). A product

of two Jacobians, corresponding to the two simultaneous trimer bridging con-
structions, has to be used in place of each J , for both the forward and reverse
moves. The weight Wθ in α accounts for all ten new bond angles generated.
The weight Wbridge reflects the screening, for excluded volume overlaps and
for excessive torsional potential, and subsequent selection, on the basis of
its torsional potential, of one among all combinations of solutions of the two
bridging constructions. That the two bridging constructions occur simultane-
ously and near each other in space generates substantial “free volume” that
can accommodate some of the solutions, as a result of which the acceptance
rate is much higher than the square of the acceptance rate of the EB move.
This makes DB and IDR feasible.
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As a measure of the rate of equilibration afforded by the DB and IDR
moves, we show in Fig. 3.16 the decay of the end-to-end unit vector auto-
correlation function 〈u(0)·u(t)〉 with CPU time in the course of isothermal-
isobaric MC simulations of C500 and C1000 melts with a united-atom model.
(In defining the autocorrelation function, the new chain identities after a
DB move are assigned as shown in Fig. 3.14.) Also shown is the correspond-
ing decorrelation curve obtained from an NV E MD simulation of the same
C1000 model. All model systems considered in the figure have exactly the
same size. It is seen that the connectivity-altering MC is roughly two orders

Fig. 3.14. Schematic of the double bridging (DB) move. (a): Local configuration
of the two chains before the move. Trimer (ja, jb, jc) is to be excised from chain
jch and trimer (ia, ib, ic) from chain ich. (b): Local configurations of the two new
chains after the move. Trimer (j′

a, j′
b, j

′
c) connects skeletal atoms i and j in chain

i′ch. Trimer (i′a, i′b, i
′
c) connects skeletal atoms j2 and i2 in chain j′

ch. Chains i′ch, j′
ch,

ich, jch all have identical length.
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of magnitude more effective than MD in sampling different orientations of
the end-to-end vector. Remarkably, the decay observed with MC is some-
what faster for the longer-chain system than for the shorter-chain one; this is
reminiscent of the favourable scaling of EBMC efficiency with chain length,
discussed above.
DB and IDR offer themselves for equilibrating systems of macromolecules

of complex, precisely defined nonlinear architectures, such as H-shaped and
ring polymers, grafted monodisperse polymer brushes, or bulk model sys-
tems of infinite chain length with no ends. Some of these systems, and the
DB/IDR moves that can be implemented for them, are shown schematically
in Fig. 3.17.

Fig. 3.15. Schematic of the intramolecular double rebridging (IDR) move. Top:
Local configuration of the chain prior to the move. The attack shown as a solid
arrow is combined with either of the attacks (a, b) represented by broken arrows.
Bottom: trial configurations of the chain after attacks a and b, respectively.
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3.3.8 Connectivity-Altering Monte Carlo and Parallel Tempering

The excluded volume interactions and torsional potentials invoked in realistic
models of polymers with relatively complex chemical constitutions result in
extremely rugged potential energy hypersurfaces. This makes the acceptance
rates of the connectivity altering moves discussed above very low at low
temperatures. Under such conditions, the rate of sampling configuration space
can be greatly enhanced by resorting to a parallel tempering strategy, outlined
in Sect. 3.1.
Wu and Deem combined parallel tempering with intramolecular rebridg-

ing MC moves to sample the conformations of cyclic peptides [16,17] and
thereby calculate the equilibrium cis and trans populations at 298 K; this
would have been impossible with MD, owing to the high free energy barriers
to cis-trans isomerisation.
Doxastakis et al. [35] combined parallel tempering and EBMC to simulate

cis-1,4 polyisoprene (PI) in the melt state. A united atom model system of 8
chains, each containing 80 carbon atoms, was simultaneously equilibrated at
10 different temperatures, ranging from 328 K to 513 K, in the NnPTμ∗ en-

Fig. 3.16. Evolution of the autocorrelation function 〈u(t)·u(0)〉 of the unit vector
directed along the end-to-end vector of a chain with CPU time for monodisperse
C500 and C1000 united-atom polyethylene melts simulated in the NPT ensemble
using DB and IDR moves. The simulation conditions are T = 450 K and P = 1
atm. Both model systems contain the same number of interaction sites (8000). Also
shown is the corresponding curve obtained from an NVE MD simulation of the
monodisperse C1000 melt. CPU times are on a DEC Alpha single-processor system
at 667 MHz.
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Fig. 3.17. Application of the DB and IDR moves to polymer systems of com-
plex architecture. (a): H-shaped molecules, (b): cyclic molecules, (c): monodisperse
grafted polymer brush, (d): melt of linear chains of infinite molecular weight.

semble. Histograms of the instantaneous enthalpy V + PV are shown in Fig.
3.18. The overlap Ω between histograms corresponding to sucessive tempera-
tures was sufficient to ensure a good acceptance ratio for the swapping moves
(see Fig. 3.19). As a result, each simulated replica visited the entire range of
simulation temperatures several times, and the drastic reconfigurations in-
duced by EBMC at high temperatures contributed to efficient sampling of
the configuration space at low temperatures as well. Obtained distributions
of V + PV , V and V and of torsion angles at various temperatures and au-
tocorrelation functions of the chain end-to-end vectors all indicate that full
equilibration was achieved at all temperatures. At the lowest temperature
simulated, the rate of equilibration was dramatically enhanced relative to
single-temperature EBMC runs [35]. Similarly good results were obtained
for atactic, isotactic, and syndiotactic polypropylene melts simulated with a
parallel tempering EBMC strategy [33].
Based on the evidence discussed above, combining connectivity-altering

Monte Carlo schemes with parallel tempering constitutes an excellent strat-
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Fig. 3.18. Instantaneous enthalpy V + PV histograms from a parallel tempering
simulation of cis-1,4 PI (united atom model, 8 chains of 80 carbons each). The
temperature levels used are (Ti, i = 1(1)10 from left to right) 328, 343, 358, 373,
390, 413, 438, 463, 488, and 513 K. (Reproduced from [35], with permission).

Fig. 3.19. Acceptance ratio (filled rectangles) of the swapping move between tem-
perature states Ti and Ti+1 as a function of i for the ten systems used in the parallel
tempering simulation. Open circles show the overlap integral Ω between the corre-
sponding instantaneous enthalpy histograms, shown in Fig. 3.18. (Reproduced from
[35], with permission).
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egy for enhancing equilibration under conditions (low temperatures, com-
plex chemical constitutions) where the acceptance rate of single- tempera-
ture connectivity-altering schemes becomes too low. Furthermore, parallel
tempering provides useful information over a range of temperatures and can
be implemented on relatively inexpensive Beowulf clusters of personal com-
puters with little programming effort.

3.4 Applications

In this section we will present some results from application of the connecti-
vity-altering schemes discussed above to specific polymer systems.

3.4.1 Structure and Volumetric Properties
of Long-Chain Polyethylene Melts

Linear polyethylene (PE) has been used as a test case throughout the develop-
ment of connectivity-altering MC algorithms [22,29,21,39]. Recently, Uhlherr
et al. [40] simulated a sample with uniform (rectangular) distribution of chain
lengths ranging from 2400 to 9600 carbon atoms (mean chain length C6000,
mean molecular weight 84000 g mol−1) in the NnPTμ∗ ensemble on a paral-
lel computer, using CONROT, DEB, reptation, flip, end rotation, and volume
fluctuation moves. For the first time, the direct atomistic simulation of such
a high molecular weight polymer, similar to the commercial grades used for
injection moulded articles, has become possible, thanks to the excellent equi-
libration properties of the DEB move.
Figure 3.20 displays the mean square end-to-end distance

〈
R2
〉
and the

mean square radius of gyration
〈
s2
〉
as functions of the chain length (number

of skeletal carbons) from a C6000 melt simulation at 450 K [40]. The functional
dependence is linear, indicating that the system is well-equilibrated and that
perturbations of the chain dimensions due to the finite size of the simulation

box are absent. The characteristic ratio C∞ = lim
X→∞

〈
R2
〉

Xl2
, with l being the

skeletal bond length, is evaluated as 8.4± 0.2. This is somewhat larger than
the commonly accepted value C∞ = 7.8 obtained via SANS measurements
[52,53], a fact attributable to the torsional potential used in the simulation.
According to Flory’s “random coil hypothesis,” chain conformations in

the melt should be unperturbed, i.e. similar to those of isolated single chains
subject only to local interactions along their backbones. Computer simula-
tions [30,29,21] were instrumental in showing that, for PE, this hypothesis
is true down to the atomistic level, if “local interactions” are appropriately
defined. Torsion angle distributions, intramolecular pair density functions,
and chain dimensions are practically indistinguishable between atomistically
simulated PE melt chains and single chains subject to the same potentials
but devoid of any nonbonded interactions between methylene or methyl seg-
ments separated by more than four bonds along their backbone. Figure 3.21
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provides evidence for this in the case of a C500 melt with uniform chain
length distribution and polydispersity index 1.09 at 450 K and 1 atm. The
mean-square end-to-end distance < R2 > from EBMC quickly stabilises at a
constant value, which is indistinguishable from the corresponding < R2 > of
single unperturbed chains.
Figure 3.22 displays the variation of specific volume v of strictly monodis-

perse linear PE melts as a function of chain length X in the range C24 - C1000
at 450 K and 1 atm. The simulation results have been obtained in the NPT
ensemble using DB and IDR moves, using a newly proposed united-atom
model for PE [51]. They are being compared with accurate experimental re-
sults, available in [54]. One observes the characteristic hyperbolic dependence
of v on X, attributed to the higher volume of end-segments in relation to in-
ternal segments in free volume theories [55]. The prediction is within 1% of
the experimental value for all chain lengths examined. This is a significant
improvement over earlier molecular models, which tended to overestimate the
density by ca. 4%. The characteristic ratio using this model turns out to be
C∞ = 8.0, quite close to the commonly accepted experimental value of 7.8 in
the melt state [52,53].
Local packing in molten PE can be reproduced very well by united-atom

simulations. Figure 3.23 compares the static structure factor S(k) predicted
from a monodisperse C1000 simulation [51] to high-quality experimental data
from X-ray diffraction [56], accumulated under comparable conditions. Agree-
ment is seen to be excellent. The first sharp diffraction peak at k = 1.35 Å−1

stems mainly from intermolecular structural correlations; the intermolecu-

Fig. 3.20. Mean square end-to-end distance
〈
R2〉 and mean square radius of gy-

ration
〈
s2〉 as functions of the chain length X from a NnPTμ∗ simulation of a

C6000 melt, where chain lengths range from 2400 to 9600. The temperature of the
simulation was 450 K and the pressure 1 bar.
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lar pair distribution function g(r) exhibits damped oscillations with wave-
length Δr = 4.65 Å� 2π/k, corresponding to the distance between nearest-
neighbour carbon atoms belonging to different chains. This first sharp diffrac-
tion peak has a 17% contribution from extended-range density fluctuations
appearing in g(r) beyond r = 10 Å [40]. The peaks in S(k) beyond k = 3.5
Å−1 are of intramolecular origin, due to the bonding and conformational
preferences along the chains, and are more or less indistinguishable from the
corresponding peaks of liquid n-butane [40].
Long-chain atomistic model configurations of PE melts, thoroughly equi-

librated through connectivity-altering MC algorithms, offer the unique op-
portunity of performing direct topological analysis for the identification of
entanglements, which are of crucial importance to the transport and vis-
coelastic properties of polymer melts, but also to the ultimate mechanical
properties of solid polymers. Although entanglements have been extremely
useful in explaining experimentally observed behaviour, their direct definition
in terms of the topology of chains has been elusive. Uhlherr et al. [40] have

Fig. 3.21. Mean square end-to-end distance as a function of CPU time in a C500

PE melt of polydispersity index 1.09, simulated with EBMC at 450 K and 1 bar.
The horizontal line indicates the corresponding value of < R2 > for a set of isolated
unperturbed chains with the same length distribution. The isolated unperturbed
chains are subject to the same potentials as the melt chains, with the exception
that there are no intermolecular interactions and no intramolecular nonbonded
interactions between segments separated by more than 4 bonds along the backbone;
they have been sampled in continuous space with a MC algorithm [21]. CPU times
are on an SGI 64-bit R10000 processor for a melt system containing 4000 skeletal
(methylene and methyl) segments.
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Fig. 3.22. Dependence of the specific volume v on chain length X in monodisperse
linear PE at 450 K and 1 atm, as predicted through NPT MC simulations using
DB and IDR moves, and as measured experimentally. (Reproduced from [51], with
permission).

Fig. 3.23. Static structure factor S(k) of a monodisperse linear C1000 PE, as
obtained from NPT MC simulations using DB and IDR moves, being compared
to an experimental X-ray diffraction pattern from PE. The simulation is at 450 K
and 1 atm; the experimental data are at 430 K and 1 atm. (Reproduced from [51],
with permission).
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analysed their model C6000 melt configurations using the formalism proposed
by Wool [57] for determining the critical entanglement molecular weight Mc,
which marks the crossover from Rouse to reptation dynamics in the chain-
length dependence of the zero-shear viscosity. Wool defines entanglements in
terms of the ratio p/n, where n is the number of chains intersecting a plane
drawn randomly through the system and p is the number of crossings of the
plane. A chain that crosses the plane three times forms a “bridge”, which
is able to interlock with chains on either side of the plane, and therefore
to transmit forces across the plane. Thus, the critical length M = Mc for
the onset of an entanglement network in the melt, according to Wool, oc-
curs when p/n = 3. As a result of the unperturbed conformations adopted
by chains in the melt [57], p/n ∝ M0.5, leading to the simple expression
Mc = 9M(p/n)−2, whereby Mc can be determined through a count of p and
n for chains of molecular weight M in an entangled melt.
The Wool approach was implemented on the C6000 model PE configura-

tions by drawing a large number (� 100) of regularly spaced planes parallel to
each face of the simulation cell in each configuration. The estimated Mc was
found to be essentially independent of M , as expected for a fully entangled
melt. The calculated average was Mc = 3400 ± 450 g mol−1, corresponding
to a chain length of approximately 240 backbone atoms, or 120 monomers.
While reported experimental values range from 3000 to more than 5000 g
mol−1, this result agrees quite well with the commonly cited value [58] of
3800 g mol−1 at 423 K. More detailed topological analyses of the entangle-
ment structure are now underway.

3.4.2 Simulations of Polypropylene Melts of Various Tacticities

Polypropylene (PP) is a very important polymer from the technological point
of view. The presence of pseudoasymmetric carbon atoms along its backbone
gives rise to the possibility of different stereochemical sequences. Three types
of PP are commonly produced: isotactic (iPP), where chains are sequences of
meso (m) dyads, syndiotactic (sPP), where chains are sequences of racemic
(r) dyads, and atactic, where chains are more or less random sequences of m
and r dyads. Equilibrium epimerized atactic PP, henceforth denoted as aPP,
has a well-defined stereostructure; its chains are Bernoullian sequences of m
and r dyads, with a fraction of m dyads equal to 48% [59] (see Fig. 3.24). The
three types of PP have very different properties; iPP and sPP are semicrys-
talline, while aPP remains completely amorphous at all temperatures, having
a transparent, leathery appearance at room temperature.
Samara [33] developed a parallel tempering EBMC strategy to simulate

PP in the melt state. In the case of iPP and sPP, EB moves were designed so
as to maintain the regular stereochemical sequence of chains. In the case of
aPP, the semigrand ensemble sampled by the EBMC method was generalised
to allow variations not only in the chain length, but also in the stereochemical
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Fig. 3.24. Diffent tacticities of polypropylene. Chains are considered in an all-trans
conformation. The spheres are methyl substituents. Hydrogens have been omitted,
for clarity.

sequence, subject to a prescribed Bernoullian distribution; four possible types
of trimer bridges were considered in each EB construction [33].
For the first time, the parallel tempering EBMC simulation was able to

give estimates of the equilibrium chain dimensions in the melt (molecular
weight 3200 g mol−1). Calculated characteristic ratios C∞, as obtained from
the simulated melts and from sampling single continuous unperturbed chains
(CUCs), are shown in Table 3.1. In the same table appear experimental val-
ues, obtained by small angle neutron scattering measurements from iPP and
aPP melts [60], values estimated for unperturbed chains through the Rota-
tional Isomeric State (RIS) model of Suter and Flory [61], as well as values
from an MD simulation [62] of single chains in a Θ solvent, where they adopt
unperturbed conformations. Results from the parallel tempering EBMC melt
simulations are in very good agreement with J.-P. Ryckaert’s results for Θ
chains and with available experimental evidence. Clearly, sPP chains are sig-
nificantly stiffer than aPP and iPP chains, which are very similar in di-
mensions. Reliable SANS data from sPP melts would be highly desirable to
validate this finding.

Table 3.1. Characteristic ratios of polypropylenes

PP type PT EBMC Experiment [60] RIS model [61] Θ chains [62]]

Melt CUC

aPP 6.2 ± 1.0 5.2 ± 0.4 5.5 5.5 6.1

sPP 8.5 ± 1.1 9.6 ± 0.1 11.0 8.0

iPP 6.6 ± 0.3 6.2 4.2 6.1

Despite these differences in chain conformation, the volumetric properties
of iPP, sPP, and aPP are very similar in the melt state. This is seen char-
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Fig. 3.25. Specific volume of isotactic, syndiotactic, and atactic polypropylene
melts as a function of temperature at 1 atm, as obtained from experiment [64]
(top) and from molecular dynamics simulations [63] (bottom). (Reproduced from
[63], with permission).

acteristically in Fig. 3.25. Both simulations [63] and experiment [64] indicate
negligible differences in density between the three different tacticities. Given
the disparity in conformational and the similarity in volumetric behaviour, an
interesting question is how the segmental dynamics compares between iPP,
sPP and aPP. This question was addressed with MD simulations [63], leading
to the conclusion that segmental dynamics is slowest in sPP and fastest in
iPP, with aPP lying in the middle. The reason for this dynamical difference is
that conformational isomerisations between the dominant trans and gauche
states are more frequent in iPP, where the relative populations of these states
are closer together [63]. This prediction was a posteriori confirmed by NMR
relaxation experiments [65].
Another interesting question that was elucidated with the help of parallel

tempering EBMC is how exactly local interactions, leading to unperturbed
conformational behaviour, should be defined in the case of PP. As mentioned
above, in the case of PE an appropriate definition of single unperturbed
chains in continuous space is to include all bonded and torsional interactions,
plus nonbonded interactions between pairs of atoms separated by four bonds
or less. Such a definition does not work for PP, however; it leads to torsion
angle distributions which are very different from those of melt chains, and
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Fig. 3.26. Four models of local interactions considered in sampling single unper-
turbed chains of PP. In each case, the segment whose skeletal carbon is marked as
a black sphere interacts with all cross-hatched atoms. Open symbols mark atoms
with which interactions are not included.

to chain dimensions which are much smaller than in melt simulations or in
experiment.
A systematic study was undertaken to determine the effects of changing

the range of what is considered as local interactions on unperturbed single
chain dimensions [33]. Figure 3.26 displays four models that were tried, with
progressively increasing range. The torsion angle distributions obtained by
sampling single chains of aPP according to these models are shown in Fig.
3.27. Clearly, the “4 bond” and “4 C bond” models produce results very far
from the melt distribution, while the “5 C bond” and “6 C bond” models
produce results which are practically indistinguishable and very close to the
melt results. Single chain dimensions obtained from the “5 C bond” and “6
C bond” models are indistinguishable from those of bulk melt chains [33].
The conclusion is that, in order correctly to sample unperturbed chains of
PP, one must incorporate nonbonded interactions of each atom with atoms of
segments lying no less than 5 skeletal bonds away from the considered atom.
Clearly, one must exercise great care in defining and sampling unperturbed
chains to determine conformational stiffness in the case of polymers with
more complex chemical constitution than PE.
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Fig. 3.27. Torsion angle distributions in model atactic PP at 600 K. Distributions
for single unperturbed chains sampled according to the “four bond”, “four C bond”,
“five C bond”, and “six C bond” models are shown with different line types. The
“five C bond” and “six C bond” results are practically coincident. Also shown, as a
grey line, is the distribution obtained from bulk EBMC simulations of an aPP melt.
The short, bold vertical lines on the abscissa mark values of the torsion angles in
the five rotational isomeric states considered in the RIS model of Suter and Flory
[61].

3.4.3 Simulation of Polydienes

Polydienes, such as polyisoprene (PI) and polybutadiene (PB), are of great
technological importance, as they constitute main components of rubbers.
Chain packing and conformation in these polymers depend sensitively on
their stereochemical configuration (1,4 or diene versus 1,2 or vinyl addition
during polymerisation, cis versus trans configuration around the double bond
in the 1,4 units) and in turn dictate their rheological properties in the melt
(important in processing), their segmental dynamics and permeability by
gases (important, e.g. in making tyres airtight) and their miscibility in the
melt state.
A combination of EBMC and parallel tempering has been used to study

the properties of cis-1,4 PI melts of mean chain length 40 to 200 carbon atoms
and polydispersity index 1.08 in the temperature range 328 to 513 K [34,35].
Use of this strategy enabled, for the first time, the full equilibration of PI
melts of this chain length. The united atom model employed is described in
detail in [34]. The torsion angle distributions it produces are consistent with
those obtained in earlier simulations of the polymer. Figure 3.28 displays the
characteristic ratio at 413 K, defined in terms of the average square skeletal
bond length l2ave = 2.18 Å

2. The quantity nmer is the degree of polymerisation
(average number of repeat units per chain, each repeat unit containing four
skeletal bonds). An extrapolation of the results shown in Fig. 3.28 to infinite
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Fig. 3.28. Characteristic ratio of cis-1,4 polyisoprene as a function of the inverse
degree of polymerisation, as obtained from EBMC simulations at 413 K (reproduced
from [34], with permission).

Fig. 3.29. Dependence of the specific volume v on mean chain length X̄ (number
of carbon atoms per chain) in cis-1,4 PI, as predicted by the EBMC simulation runs
at 413 K and 1 atm. The dashed line shows a hyperbolic fit according to (3.30).

chain length gives a value of C∞ of 4.5 to 4.8. The value of C∞ at 413
K, based on experimental measurements, is 4.8 to 5.5. The apparent slight
underestimation in the simulation may be partly due to the presence of some
trans-1,4 linkages in real PI, which were absent from the model polymer. At
lower temperatures, agreement with reported experimental values improves
[35].
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The specific volume at 413 K and 1 atm is shown as a function of mean
chain length in Fig. 3.29. The dependence is parabolic, as already seen in the
case of PE. The dashed line represents a fit through the simulation points
[34] with the equation

v = v∞ + v0/X̄ (3.30)

From this fit, the specific volume of PI of very large molecular weight at
413 K is estimated as v∞ = 1.178 cm3/g. Nemoto et al. [66] and Han et
al. [67] have correlated experimental data on the specific volume of PI as a
function of temperature. According to the first correlation, v∞ at 413 K is
1.196 cm3/g; according to the second, 1.183 cm3/g. Clearly, the simulation
estimate is in very good agreement with experimental evidence.
Apart from dramatically accelerating equilibration at low temperatures,

parallel tempering offers the opportunity to study thermodynamic and struc-
tural properties systematically as functions of temperature. Figure 3.30 shows
the temperature dependence of the specific volume of a cis-1,4 PI melt of
mean chain length 80 carbons (open circles). The two filled circles represent
single-temperature EBMC results at 373 K and 413 K using an eight times
larger simulation box; they ensure that the parallel tempering run is free of
system size effects. The dashed and straight lines display the Nemoto et al.
[66] and Han et al. [67] correlations, respectively. Clearly, the parallel temper-
ing EBMC simulation does an excellent job capturing the thermal expansion
of the polymer melt.

3.4.4 Prediction of Melt Elasticity

Let us consider a polymer melt subjected to a steady-state flow. If the strain
rate imposed by the flow is high, in comparison to the longest relaxation time
of chains, then the chains will orient, i.e. the clouds of segments constituting
the chains will depart from an isotropic orientation distribution. If the flow
is very strong, it may even “unravel” the polymer coils, causing changes in
their intrinsic shape. This is the molecular origin of viscoelastic behaviour in
polymer melts, which is particularly pronounced at high molecular weights.
To describe these effects in a very coarse-grained sense, one may introduce

a “single conformation tensor” model, wherein the mean chain orientation
and shape are described in terms of the quantity c̃ defined in (3.19). As de-
scribed in Sect. 3.3.5, Mavrantzas and Theodorou [42] have introduced and
implemented a computational methodology, involving EBMC simulations in
the NnbTμ∗α ensemble, to capture flow-induced changes in the melt struc-
ture and compute the free energy, energy, entropy, and stress of unentangled
melts subjected to steady-state flows.
Figure 3.31 depicts the average shape of chains in a C78 melt (a) at

equilibrium; (b) subject to a steady-state uniaxial elongational flow along
the x-direction with αxx = 0.3 (anisotropy of the stress tensor τxx− τyy � 28
atm). In both (a) and (b) the average chain segment cloud has been visualised
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Fig. 3.30. Open symbols: Dependence of the specific volume of cis-1,4 PI on tem-
perature as predicted from parallel tempering EBMC simulations of a model melt
consisting of 8 chains with average length 80 carbons. Filled symbols: Results from
two single-temperature EBMC runs carried out at 373 K and 413 K using a simu-
lation containing 64 chains, to ensure that system size effects are absent from the
parallel tempering simulations. Dashed line: Nemoto et al. correlation for the vol-
umetric properties; Solid line: Han et al. correlation for the volumetric properties
(reproduced from [35], with permission).

in the laboratory frame of reference. Clearly, it is isotropic (spherical) in the
equilibrium (quiescent) melt case but assumes the shape of a prolate ellipsoid
of revolution in the presence of the flow. Chain segment clouds, as whole
objects, orient along the x-direction.
Figure 3.32 shows again the average shape of chains in the C78 melt, but

this time in the frame of the principal axes of the instantaneous radius of gy-
ration tensor. The average intrinsic shape of the chain segment cloud is thus
revealed under (a) equilibrium and (b) steady-state uniaxial elongational flow
(αxx = 0.3) conditions. One sees that, under the relatively gentle flow con-
ditions considered, the intrinsic shape of chains is not significantly affected;
it remains similar to that of a “cake of soap”, as pointed out long ago for
random walks by Šolc and Stockmayer [68] and subsequently seen for atom-
istically represented unperturbed chains sampled according to the Rotational
Isomeric State model [69]. Under the conditions considered in Figs. 3.31 and
3.32, the flow brings about an overall orientation, but not “unravelling” of
the chains; this is also seen from a direct comparison of the torsion angle
distributions under equilibrium and flow conditions [42]. On the other hand,
for stronger flow fields (larger αxx values) the simulations reveal a progressive
elongation of the intrinsic shape of chains in the x direction, accompanied by
an enhancement in the population of trans torsion angles [42].
Figure 3.33 shows the free energy, ΔA, relative to the equilibrium (un-

deformed) state for the same C78 melt subjected to steady-state uniaxial
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Fig. 3.31. Average shape of the segment cloud of chains in a C78 melt with flat chain
length distribution and polydispersity index 1.08 (a, top) at rest; (b, bottom) under
steady-state elongational flow with αxx = 0.3. To create the isosurfaces depicted in
the figure, all chains in the sampled configurations were translated in the laboratory
frame of reference so as to bring their centres of mass at a common point. The
isosurfaces are drawn for a segment density of 0.35 mers/nm3 and contain 87.5 %
and 83.2 % of the total segments in cases (a) and (b), respectively. The distance
between successive grid points on the axes represents 12.45 Å of real length. T is
450 K and b is 1 atm. (Reproduced from [42], with permission).

elongational flows of different strengths αxx at T = 450 K and b = 1 atm.
ΔA values have been obtained by thermodynamic integration of the c̃ versus
α relation obtained from the simulations [42]. Also shown is the variation of
the internal energy of the melt, ΔU , as a function of αxx, obtained directly by
averaging the potential energy in the course of the simulations. The entropic
contribution TΔS, calculated as ΔU − ΔA, is also shown. ΔA provides a
direct measure of the elastic response of the melt to the steady-state flow.
Clearly, for the conditions considered in Fig. 3.33, this response is purely en-
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Fig. 3.32. Average shape of the segment cloud of chains in the coordinate frame
of their principal axes in a C78 melt with flat chain length distribution and poly-
dispersity index 1.08 (a, top) at rest; (b, bottom) under steady-state elongational
flow with αxx = 0.3. To create the isosurfaces depicted in the figure, all chains in
the sampled configurations were translated in the laboratory frame of reference so
as to bring their centres of mass at a common point and rotated so as to make
their longest, intermediate, and shortest principal axes coincide with three pre-
set orthonormal directions. The isosurfaces are drawn for a segment density of 5
mers/nm3 and contain 59.2 % and 56.3 % of the total segments in cases (a) and
(b), respectively. The distance between successive grid points on the axes repre-
sents 9.96 Å of real length. T is 450 K and b is 1 atm. (Reproduced from [42], with
permission).

tropic, originating in the orientation effect discussed above. This ceases being
true under stronger flow conditions; for a C24 melt and values of αxx higher
than 0.3, the simulations reveal a significant energetic component ΔU which
is negative and increases in absolute value with increasing αxx. This energetic
component is linked to the changes in intinsic chain shape discussed above.
Detailed analysis attributes it to the development of more attractive lateral,
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“nematic type” nonbonded interactions between the oriented chains, which
are partly unravelled in the x-direction, and also to a reduction in intramolec-
ular torsional energy reflecting the shift from gauche to trans torsional states
which accompanies the unravelling [42]. It is, however, remarkable that, un-
der the conditions of small αxx representative of common polymer processing
operations, the melt response is purely entropic (Fig. 3.33), as postulated by
most mesoscopic theories of melt viscoelasticity.

Fig. 3.33. Changes in the Helmholtz free energy ΔA, internal energy ΔU , and en-
tropy multiplied by the temperature, TΔS, relative to the equilibrium undeformed
state for a C78 polymer melt subjected to steady-state uniaxial elongational flow,
as functions of the orienting field αxx (T = 450 K, b = 1 atm).

The free energy function of Fig. 3.33 defines a “spring force law” for the
single-conformation tensor model of (3.20), derived directly from atomistic
information. It can be compared against various “dumbbell” models used in
the mesoscopic modelling of polymer flows. The comparison can be made
either at the level of ΔA itself [45] or at the level of its first derivative (func-
tional dependence of c̃ on α) [21]. It is found that the atomistically computed
elastic response is quite close to that predicted on the basis of the finitely ex-
tensible nonlinear elastic (FENE) and preaveraged FENE (FENE-P) models
with parameter values of these models computed from the equilibrium mean
square end-to-end distance of the atomistic chains and their contour length
at full extension. On the other hand, the Maxwell dumbell model is in poor
agreement with the simulation results, because it does not take into account
the finite extensibility of the chains.
Equation (3.23) leads to estimates of the stress tensor τ which are in excel-

lent agreement with, but much less subject to statistical error than, estimates
based on the virial theorem [42]. Within the context of the GENERIC formal-
ism [45] one can associate the orienting field α with the strain rate tensor ε̇.
Values of ε̇xx for the elongational flow situation considered here can thereby
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be calculated from αxx and from the Rouse time of chains, which is extracted
from equilibrium molecular dynamics simulations of the unentangled melt.
Estimates of the elongational viscosity ηE obtained as

τxx

ε̇xx
at low αxx values

are consistent with Trouton’s rule ηE = 3η0 [44].
Experimentally, stress in flowing melts is measured through birefringence

measurements. By ascribing polarisability tensors to all repeat units in the
sampled configurations and using the Clausius-Mossotti equation, one can
calculate the index of refraction tensor, n, as an ensemble average [43]. Fig-
ure 3.34 displays the anisotropy of the index of refraction, nxx − nyy, as
a function of the anisotropy of stress, τxx − τyy, for two polyethylene melts
subjected to steady-state uniaxial elongational flow, as computed from Monte
Carlo simulations in the NnbTμ∗α ensemble. The relation between nxx−nyy

and τxx − τyy is linear, as observed experimentally (“stress optical law”).
Furthermore, the coefficient of proportionality in this linear relationship,
Csimul = (2.35 ± 0.10) × 10−9 Pa−1, predicted for the C200 melt, is in ex-
cellent agreement with the experimental value reported by Janeschitz-Kriegl
for high-molecular weight polyethylene subjected to elongational flow [43],
Cexpt = 2.20× 10−9 Pa−1. At very high stress anisotropies (corresponding to
very high strain rates), some nonlinearity is observed in the predicted bire-
fringence, the nxx−nyy versus τxx− τyy curve becoming concave downwards
[43,44].

Fig. 3.34. Anisotropy of the index of refraction, nxx − nyy, as a function of the
anisotropy of stress, τxx − τyy, for C78 and C200 melts subjected to steady-state
uniaxial elongational flow along the x-direction (T=450 K, b = 1 atm).
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Pre-oriented melt configurations generated under conditions of steady-
state uniaxial elongational flow, using EBMC in the NnbTμ∗α ensemble, are
excellent starting points for conducting nonequilibrium molecular dynamics
(NEMD) simulations to track the relaxation of melt structure and stress to
equilibrium upon cessation of the flow. Such NEMD computer experiments
have been performed on unentangled PE melts [70], leading to estimates of
the relaxation time spectrum which are fully consistent with those obtained
through equilibrium MD [71].

3.4.5 Sorption Equilibria of Alkanes in Polyethylene

An accurate knowledge of phase equilibria in oligomer-polymer systems is
important for many applications. The effective design of polymer production
processes requires knowledge of the conditions that ensure full miscibility of
the polymer with the monomer and any solvent present during polymerisa-
tion, and partial miscibility during separation and collection of the final prod-
uct. On the other hand, devolatilisation, i.e., removal of residual monomer
and solvent from a polymer product under low pressure and high tempera-
ture conditions, is of critical importance for the protection of the environment
and for the elimination of health and safety hazards from toxic monomers and
solvents.
Phase equilibria in oligomer-polymer systems have been studied exten-

sively with experiments, equation of state-based thermodynamic analysis, and
molecular simulation. As already mentioned, traditional Monte Carlo–based
simulation methods [47] require insertions/deletions of oligomer molecules
within, or exchanges of oligomer molecules between, dense phases; thus, they
become exceedingly time consuming when large oligomer molecules are of
interest, even when configurational bias strategies are used.
Zervopoulou et al. [46] have employed Monte Carlo simulations in the

f ′1Npn0PTμ∗ statistical ensemble to predict the sorption thermodynamics of
C4 to C20 alkanes in molten polyethylene around 450 K over a wide range of
alkane fugacities. By introducing scission and fusion moves, as explained in
Sect. 3.3.6, these simulations obviate the need to perform insertions/deletions
or exchanges of molecules, and thus circumvent the associated excluded vol-
ume overlap problems. Zervopoulou et al. have compared their results against
those obtained from a more conventional f1NpnPTμ∗ simulation [46], i.e.,
a hybrid isothermal isobaric–grand canonical simulation employing inser-
tions/deletions of oligomer molecules in a polymer matrix being simulated
with EBMC. In the following we will refer to the insertion and deletion-based
f1NpnPTμ∗ MC simulation as “Method 1” and to the scission and fusion-
based Monte Carlo simulation in the f ′1Npn0PTμ∗ ensemble as “Method
2”.
Figure 3.35 presents predictions of the sorption isotherm of n-decane (C10)

in molten linear PE at 458 K, as obtained from the two simulation methods.
Over the range of molecular weight distributions studied (mean PE chain
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length C78 to C200, flat chain length distribution with polydispersity index
I = 1.08) the sorption equilibria have been found to be insensitive to the
exact molecular weight distribution of PE [46]. Predictions are based on
the NERD force field. Also shown in Fig. 3.35 are experimental measure-
ments from Bonner et al. [72] and a calculation based on the self-associating
fluid theory (SAFT) equation of state. All sets of data agree very well. The
isotherm has a characteristic upward-curving “Flory-Huggins” shape; as more
and more alkane is dissolved in the polymer with increasing fugacity, the
“fractional free volume” of the polymer phase increases, making it easier for
the alkane to dissolve. Although Methods 1 and 2 give the same results, the
CPU time required for the scission and fusion-based Method 2 to equilibrate
the composition is shorter by a factor larger than 20 than for the insertion
and deletion-based Method 1 [46]. The horizontal error bars on the points
from Method 2 in Fig. 3.35 arise during the process of converting the relative
fugacity f ′1 of the alkane to an absolute fugacity f1; this is done by virtually
incrementing the PE chains present in the simulated system by one segment
[46].

Fig. 3.35. Sorption isotherm of C10 in molten polyethylene at T = 458 K. Predic-
tions are shown from the insertion and deletion-based MC Method 1 and from the
scission and fusion-based MC Method 2, using the NERD force field. Also shown
are experimental data and a calculation based on the SAFT equation of state.

Figure 3.36 shows calculated sorption isotherms for n-eicosane (C20) in
molten PE at 474 K. Predictions from the scission and fusion-based Method
2 only are shown, obtained with the NERD force field [46]. Method 1 cannot
converge for C20 under the conditions considered here, despite the use of con-
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figurational bias in the insertion/deletion moves. Predictions from Method 2
are in excellent agreement with the SAFT calculation, which is expected to
be very accurate for this system. Unfortunately, direct experimental evidence
is unavailable. This alludes to the difficulty of performing accurate experi-
mental measurements of phase equilibria in oligomer-polymer systems, a dif-
ficulty which can be alleviated through the development of reliable molecular
simulation and theoretical calculation schemes.

Fig. 3.36. Sorption isotherm of C20 in molten polyethylene at T = 474 K. Predic-
tions are shown from the scission and fusion-based MC Method 2, using the NERD
force field, and from the SAFT equation of state.

Volumetric changes in the polymer phase as a result of sorbing the oligomer
can readily be captured with the MC schemes of Zervopoulou et al. [46]. Fig-
ure 3.37 displays the percent equilibrium swelling of a PE melt at 474 K as
a result of sorbing n-pentane at various pressures. The points displayed have
been obtained with Method 1. Method 2 leads to identical results. Clearly, the
swelling is substantial. Results from the simulations are in very good agree-
ment with predictions from the SAFT equation of state, especially when the
TraPPE model is employed in the simulations. Interestingly, the mass den-
sity of the alkane-swollen polymer phase is found to be quite insensitive to
pressure [46]. This results from a compromise between two opposing ten-
dencies: a tendency to densify in response to the application of higher and
higher pressures, and a tendency of “free volume” to increase as a result of
the increased concentration of the lower-density sorbed alkane. Over a wide
range of pressures, the mixed phase behaves as if it were incompressible;
this may explain the success of simple incompressible theories, such as the
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Flory-Huggins theory, in qualitatively capturing sorption behaviour in these
systems.

Fig. 3.37. Percentage of equilibrium swelling (volume increase) of a molten
polyethylene phase as a result of sorbing pentane from a pure pentane phase at
various pressures. The temperature is 474 K. Predictions are shown from the inser-
tion and deletion-based MC Method 1, using the NERD and TraPPE force fields,
as well as from the SAFT equation of state approach.

3.4.6 Polymers at Interfaces

Connectivity-altering MC schemes can be used for the rapid equilibration of
interfacial systems containing long-chain polymers.
Daoulas et al. [73] used EBMC simulations in the Nnμ∗PT ensemble in

order to study the thermodynamic and conformational properties of polyethy-
lene melt/graphite interfaces, wherein some of the polyethylene chains are
terminally grafted to the graphite substrate. Such use of terminally grafted
chains is technologically very important for enhancing adhesion between a
polymer and a solid substrate.
The Daoulas et al. simulations employed a realistic united-atom PE model

and an atomistic representation of the graphite substrate. Grafted and free
chains of mean length C78 to C250 and polydispersity index 1.08 to 1.14 were
considered. The surface density of grafted chains was 0.54 to 2.62 chains/nm2

and the temperature was 450 K. Thin film systems consisting exclusively of
PE chains terminally grafted to the graphite (with no free chains) were also
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simulated. End-bridging moves involving grafted and free chains were de-
signed so as not to perturb the topology of grafting by, e.g., creating chains
grafted on both ends [73]. Excellent performance of the equilibration algo-
rithm was noted.
Figure 3.38 displays the volume fraction profiles of segments belonging

to the grafted (φg(z), profiles decaying with increasing z) and segments be-
longing to the free (φf (z), profiles rising with increasing z) as functions of
the distance z from the graphite surface for a C156 system at two surface
grafting densities. Also shown are results from a lattice-based self-consistent
field (SCF) approach to the same problem [74]. The chain representation in
the SCF model has been designed so as to respect the mass density, contour
length, and conformational stiffness of the atomistic chains; SCF calculations
have been conducted using the same chain length distribution, surface graft-
ing density, and temperature as in the atomistic simulations. On the basis
of this and similar figures, it is seen the SCF calculation can capture the
overall spatial distribution and conformation of grafted and free chains with
remarkable success. Only on the length scale of individual methylene units,
close to the solid substrate, are there some atomistic layering effects which
cannot be captured by the more coarse-grained SCF calculation.
An interesting feature of these interfaces, with profound consequences

for adhesion [74,76], is that, with increasing surface grafting density, a layer
consisting almost exclusively of surface grafted chains builds up next to the
solid substrate, pushing the free chains towards the bulk melt. Thus, the
width of the region over which grafted and free chains interpenetrate does
not necessarily increase upon increasing the surface grafting density. For the
grafted chains, this phenomenon is sometimes referred to as a transition from
a “wet brush” to a “dry brush” regime; it was first predicted on the basis of
scaling arguments by de Gennes [77].

3.5 Conclusions and Outlook

We have discussed a family of connectivity-altering Monte Carlo algorithms
which permit the rapid equilibration of dense polymer systems consisting of
long chains. Thanks to their excellent scaling with chain length, these algo-
rithms can, for the first time, fully equilibrate melts of molecular weight 104 -
105, comparable to that encountered in plastics processing operations, at all
length scales. Relying upon the solution of a well-understood geometric bridg-
ing problem, they have been adapted to deal with a variety of monomer con-
stitutions. Furthermore, there is excellent synergy between these algorithms
and state-of-the-art techniques for overcoming barriers in rugged potential
energy landscapes, such as parallel tempering.
Application of the connectivity-altering algorithms has yielded predic-

tions of the structure, volumetric properties, chain conformational charac-
teristics, and sorption equilibria in several polyolefin and polydiene systems,
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Fig. 3.38. Volume fraction profiles of free and grafted chains obtained through
EBMC simulation of a C156 melt, consisting of free and grafted chains, next to
a graphite surface. Two different interfacial systems, with grafting densities 0.87
chains/nm2 (solid circles) and 1.31 chains/nm2 (open squares), are considered. The
solid and dashed curves show the corresponding predictions of the SCF model of
[74]. A configuration of the interfacial system with surface grafting density 1.31
chains/nm2 is shown on the left, with grafted chains in black and free chains in
grey lines.

in excellent agreement with experiment. Moreover, the algorithms have been
used in order to derive potentials of mean force with respect to selected,
slowly varying degrees of freedom (e.g., the conformation tensor) for use
within nonequilibrium thermodynamic approaches (e.g., GENERIC) to flow
and transport phenomena. More generally, the algorithms constitute useful
tools for deriving “coarse-grained” model representations, cast in terms of a
few, slow degrees of freedom or “order parameters”, directly from atomistic
information.
The well-equilibrated configurations sampled by the connectivity-altering

Monte Carlo algorithms serve as excellent starting points for molecular dy-
namics simulations aimed at elucidating and predicting dynamical properties
in polymer melts or polymer solutions; also for forming glassy configurations
and studying their properties.
Research on the applications discussed in Sect. 3.4 is continuing. Current

efforts pursue four additional directions: (a) equilibration of melts consisting
of chains with highly nonlinear architectures, such as star and comb polymers;
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(b) prediction of mixing thermodynamics in polymer blends (e.g., blends of
polyisoprene and polybutadiene) from atomistic simulations; (c) combination
with schemes for the pretabulation of interactions between inflexible mul-
tiatom moieties (e.g., aromatic groups) for the equilibration of stiff polymers
consisting of such moieties (e.g., polyimides); (d) study of phase transitions
of melts under conditions of steady-state flow, e.g. of the shift in melting
point expected when molten polyethylene is subjected to uniaxial or biaxial
elongational flow.
On the algorithmic side, efforts are made to enhance the acceptance rate

of connectivity-altering moves and to reduce the “shuttling” tendency in runs
employing these moves. Modified moves employing local relaxation of the en-
vironment around the point where a bridging event takes place are currently
under investigation.
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Abstract. We analyze the physical ideas used to analyze the computational Monte
Carlo experiments on dynamics of protein folding and dynamics of other complex
systems. We show that the concept of reaction coordinate can be formulated in a
systematic way using the concept of commitor. This quantity can be usefully de-
scribed by associating certain system of resistors with the space of conformations
of the protein, in which case the flow of current and the distribution of poten-
tials, governed by the Kirchoff rules, give full description of the topology of folding
pathways.

4.1 Introducing the Characters

Most novels are based on a love triangle. Science in this regard is becoming
competitive to novels: in addition to experiment and theory, computation is
now the third party to the scientific triangle. Scientists of the past lived a
quiet family life, maintaining satisfactory relations of the two sides, theory
and experiment. As long as theories were in a reasonable agreement with
experiments, everything was in order. Because of the triangle, our life now is
potentially frustrated: harmonizing two sides of the triangle, we risk to frus-
trate the third. This concentrates exclusively on the relation between theory
and computation. How can we understand theoretically certain computer
experiments?
Specifically, the subject matter has to do with the ways to understand the

mobility of foldable polymers, and it is of course motivated by the protein
folding problem. The hope is to show that theoretical understanding of com-
putational models provides an insight useful beyond the theory-computation
side of the scientific triangle.
Dynamics of protein folding is by no means a new problem. There is now

vast literature on this subject, including experimental, theoretical, and com-
putational works [1]. One of the central aspects is known under the nickname
of ”an adequate reaction coordinate, or order parameter, problem.” The issue
has a long history and, in the view of this author, a confusing name. In fact,
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the issue is not so much about the coordinate, but about the potential pro-
file along this coordinate. In this article, I want to discuss a simple physical
analogy which may shed a new light on this problem.
The problem under consideration is quite general in spirit. Similar diffi-

culties exist not only in various models of protein folding, but also in other
complex systems. They arise whenever relevant space of configurations is not
only multidimensional, but also geometrically complex (curved, restricted,
etc). In such cases, the simple idea of barrier crossing is at least insufficient,
and sometimes outright confusing. There is enormous literature on the sub-
ject (the reader may want to consult the references in the recent review article
[2]).
One popular language used in discussions of similar problems is that of

energy (or free energy) landscapes. It is hard to say who was the first to
introduce this approach. The very term “energy barrier” suggests that some
landscape-related images were around for a very long time. In recent years,
this terminology has become very popular thanks mainly to the works by
Wolynes and his co-authors on energy landscapes in protein folding context
(see recent review [3] and references therein).

4.2 Setting Up the Stage: Conformation Space
and Reaction Coordinate

4.2.1 Conformation Space: Lattice Polymer

Computationally most tractable polymer model is the lattice one. It repre-
sents the polymer as a self avoiding walk on a (cubic) lattice. An appropriate
set of local moves is usually defined to allow the dynamics realized as a succes-
sion of these moves. In the most common Stockmayer-Verdier model [4], these
moves include end flip, corner flip, and crankshaft flip. The only requirement
for the set of local moves is that they have to provide for ergodicity: every
conformation should be possible to transform into every other conformation.
Importantly, ergodicity does not require that the path from one conformation
to another be short or simple, it only requires that such path exists.
We now have to make one step further in the direction of abstraction and

ask: what is the space of conformations for such lattice polymer? This space
is in fact a graph [5,6]. Each vertex of the conformational graph represents
one particular conformation. Two vertices of the graph are connected by
a bond if and only if the corresponding conformations can be transformed
into one another by a single elementary move. When all conformations are
included, this graph is connected, which is to say that the system is ergodic.
In general, this graph, or certain regions of it, may have non-trivial fractal
dimension [7]. In addition, certain parts of conformation graph are shown to
be of a small world network type [8]. Finally, if we restrict consideration with
only compact conformations, then ergodicity may be broken [9]; controlling,
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say, maximal gyration radius of the polymer in real space we can observe
percolation transition in the graph of conformations.

4.2.2 Conformation Space: Off-lattice Polymer

In the simplest off-lattice model, the chain conformation is fully described
by the set of monomer position vectors, ri. Naively, this suggests that the
space of conformations for the N -mer is a 3N -dimensional Euclidean space.
This is wrong. To see why and how this is wrong, it is enough to consider a
”polymer” with two monomers (N = 2) with fixed bond length: apart from
translational freedom of the first monomer, the ”space of conformations” is, of
course, a sphere - curved surface with non-Euclidean internal geometry. This
very simple argument can be pulled quite far to show that conformation space
is very much curved for long polymers, and its internal geometry is not at all
Euclidean [10]. One should not be distracted by the fact that conformation
can be fully characterized with the Euclidean position vectors ri - this only
means that the curved space of conformations can be embedded in a bigger
Euclidean space - just like we usually imagine a sphere in a 3D space. This
embedding in no way cancels or downplays the importance of the fact that
internal geometry of conformation space is not Euclidean, because of course
all the dynamical trajectories of the systems are in this space, not in the
bigger flat one.
Clearly, the difference between on-lattice and off-lattice cases is neither

deep nor important in this context. To understand it, let us begin with ne-
glecting the excluded volume constrains. In this case, lattice model has just
6 (on the cubic lattice in 3D) possible positions for every bond. Similarly, in
an off-lattice model based on rotational isomers, there are a few permissible
rotational states for every bond. With 2 possible states for every one of N
monomers, the graph of conformations would have been an N -dimensional
hypercube; similar figure with 6 or other finite number of vertices along each
of the N axis has no special name, so, for the lack of a better word, let us call
it a ”cube.” Of course, imposition of the excluded volume constraints erases
many (in fact, even the majority) of the ”cube” vertices, the ones which
correspond to conformations with overlapping monomers. Nevertheless, the
remaining part, which is the real conformations graph, is still a part of a cube,
which obviously has nothing to do with the regular lattice - discrete analog
of a flat Euclidean space. Similarly, for the off-lattice model with continuous
set of rotations, conformation space is compact (in the strict mathematical
sense of the word) and curved.
Thus, the stage of the protein folding drama is a compact space, some

part of a ”cube” or its continuous analog. It is terribly curved and restricted,
it has complex topological and fractal properties. How can we understand
the motion of a protein in such space?
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4.2.3 Reaction Coordinate Problem

Speaking about protein folding kinetics, it is fashionable to resort to the so-
called landscape theory. This theory invokes an intuitively appealing image
of a rugged terrain in a mountain country. Everyone is aware about one dif-
ficulty of such approach, and everyone is prepared to brave it: While vertical
coordinate in the landscape picture is energy, there are great many ”hori-
zontal” coordinates; underlying ”geography” is multidimensional. The bigger
problem, however, is the above mentioned complicated geometry of the un-
derlying space of conformations.
The problem is frequently formulated in terms of the choice of proper

reaction coordinate, or, in other words, dynamic order parameter. This is
supposed to be a quantity suitable to monitor the progress of a molecule from
somewhere in the sea of unfolded states and all the way into the correctly
folded state. The choice of a ”good” reaction coordinate is mixed with the
issue of a preferred path of folding in conformation space. In fact, these two
issues are very different.
First, as regards the preferred path, it can be only understood in terms

of some projection of a full conformation space. Clearly, there are always
great many ”inessential” small scale movements which are not important for
the overall folding progress. In order to see a pathway, we must imagine a
projection along all these ”inessential” coordinates on the smaller space of
only ”essential” ones. The choice or identification of the latter is a difficult
problem, but the necessary one if we want to discuss the folding pathway. As-
suming that this problem is somehow resolved, we are immediately tempted
to say that the coordinate along the pathway is the reaction coordinate.
In fact, the issue of a pathway is difficult and open one (see [11] and refer-

ence therein), while the question of the reaction coordinate is independent of
it. To understand this point, it is useful to recognize the difference between
the question of the reaction coordinate and that of the relevant (free) energy
profile [12].
Consider an elementary example, kinetics of a first order phase transition,

such as gas-liquid. As it is well known, the transition occurs via nucleation
and growth mechanism. In the usual theory [13], nucleus is assumed to be
spherical, and its radius serves as an order parameter or reaction coordinate.
What does this mean? This means, we assume the free energy associated
with the nucleus of radius R to include two contributions, proportional to
the nucleus volume and surface, respectively. The former has to do with the
deviation from the point of thermodynamic phase equilibrium (say, over-
cooling) Δ, the latter is interpreted as a surface tension, γ. This yields the
R-dependent free energy

F (R) = −ΔR3 + γR2 , (4.1)

which has a barrier at finite R. Then, what one does is one writes the diffu-
sion equation in ”the space of nuclei sizes R” and obtains the qualitatively
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reasonable description of the nuclei development [13]. As a matter of fact,
recent simulations [14] indicate that this theory is less than perfect quanti-
tatively, but this is not so important for the present discussion. We should
concentrate on the choice of R and the derivation of the free energy profile,
Eq. (4.1).
What happens if we choose some other variable, instead of R? In this

context, averaged density is sometimes viewed as an example of totally inap-
propriate reaction coordinate. Indeed, thinking about gas-liquid transition in
terms of changing density, one imagines a succession of more and more dense
spatially uniform states. Along such pathway, the barrier is enormous, it is
proportional to the total volume of the system. However, this conclusion is
only due to the assumption of spatial uniformity. In fact, as we know well,
when averaged density increases very slightly from its gas value, it is getting
overwhelmingly more favorable for the system to break spatial uniformity
and to have one small nucleus with the density of a liquid, leaving density in
other places unaffected. Therefore, we can describe the transition in terms
of density, but we should be prepared to pay dearly - we should defy our
intuition and to realize that the state with the given averaged density may
not be, and mostly likely is not, the state with uniformly distributed density.
In this sense, it is trivial to derive a one-to-one relation between R and the

averaged density (assuming for simplicity that there is only one nucleus in the
system): ρ = ρg/

(
1− 4πR3(ρl−ρg)

3N

)
, where N is the total number of particles,

while ρg and ρl are the gas and liquid densities, respectively. Therefore, we
can easily re-formulate the free energy profile F (R) (4.1) taking ρ as another
independent variable.
The message from the discussion above is simple. It is the free energy

profile, not the coordinate itself, that is important to determine properly if
we want to have an adequate description of the transition kinetics.
What is the standard method to determine the free energy profile as a

function of the chosen reaction coordinate? There is only one particular limit
in which the answer is simple. Specifically, let us assume that there is one
particular variable in the system which changes much slower than any other
variable; let us call this slow coordinate p. In this assumption, p is ”slow” in
the sense that all other degrees of freedom, which we call q for simplicity, have
enough time to arrive to the conditional thermodynamic equilibrium while p
does not change appreciably. This gives rise to the effective free energy profile

F (p) = −kBT ln
[∫

exp
(

−H(p, q)
kBT

dq

)]

, (4.2)

where H(p, q) is the corresponding energy.
Is this simple case generic? Could one generally define reaction coordinate

as the slowest degree of freedom in the system? The answer is certainly no.
Indeed, for the formula like (4.2) to apply, it is not enough to have strongly
differing time scales in the system; it is necessary to have just one degree
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of freedom much slower than all others. There is no ground to expect such
situation for a generic system, nor is there any hope to find such special
situation for the proteins. What can one do then?

4.3 Unfolding the Drama: Commitor, pfold,
and the Reaction Coordinate

4.3.1 Commitor

The practical solution to the problem was suggested in the work [15] and,
independently, in [2]. This solution is based on the quantity called p-fold [15]
or ”commitor” [2]. We shall use here both terms interchangeably.
Let us first discuss this quantity for a lattice model [15]. To understand

what is p-fold, we assume that there are two well defined states of the system,
in case of lattice toy proteins those are folded and unfolded states. For the
present discussion, it is not important that folded state is usually represented
by just a single compact conformation, while unfolded state is a big ensemble
of coil-like conformations. What is important is that in the conformation
space graph certain vortices are labeled as belonging to unfolded state, while
certain others are labeled as belonging to the folded state.
Now, we pick an arbitrary conformation, or an arbitrary vertex of the con-

formation space graph, and define p-fold for this conformation in the following
way. Imagine that we perform many Monte Carlo runs using the chosen con-
formation as an initial one. Every time, we run Monte Carlo dynamics for as
long as it takes for the system to arrive for the first time into either folded or
unfolded state. Then, we have to collect the statistics over many runs, and
determine the probability, p, that a run, or randomly chosen trajectory, will
first arrive into the folded state before ever touching the unfolded state. This
probability is p-fold.
Quite similarly, commitor can be defined for an off-lattice system [2]. In

this case, we choose a particular configuration (or conformation), and then
initiate many trajectories going out of this point by randomly choosing the
full set of momenta (or velocities). Once again, we determine the probability
that the trajectory first hits the folded state before ever touching the unfolded
state.
What is the meaning of this quantity, whether one prefers calling it p-fold

or commitor? It is simple. It measures the commitment of the system for
folding. If p is large, close to unity, that means he system is very close to the
folded state, its descend back to the unfolded state is unlikely. Vice versa, if
p is small, that means the system is close to the unfolded state.
It was conjectured in the work [15] that the value of p-fold, although time

consuming for computer experiment. represents the best possible approxi-
mation for the reaction coordinate. Indeed, if there were the slowest degree
of freedom in the system, then p would be clearly a well defined monotonic
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function of this coordinate. As the system progresses along the selected singly
degree of freedom from an unfolded to the folded state, its value of p necessar-
ily increases. Thus, if the reaction coordinate in the traditional sense existed,
it would be basically the same as commitor. However, p can be computed by a
constructive algorithm, albeit time consuming one, while reaction coordinate
is never known. And, most importantly, p-fold, or commitor, remains well
defined even for the generic system, with no special slow degree of freedom.
The concept of commitor, or p-fold is currently widely used in protein

folding simulations (see, for instance, [11]). Nevertheless, there is a feeling
that better intuition about this quantity is necessary. For instance, the works
on the statistical mechanics of folding trajectories [16] lead to the questions
like the ones about local extrema of p-fold. Is it possible to find a state such
that all surrounding states have p-fold smaller (or larger) than the given one?
If the answer were to be positive, that would render the concept of commitor
useless at the very least. Luckily, the intuition suggests that it should be
impossible. Below, we shall prove that it is impossible indeed.

4.3.2 Direct Current Analogy

In this section, we shall describe the physical analogy which helps intuitive
understanding of the commitor, and also allows to prove their general prop-
erties, like monotonous behavior mentioned in the previous paragraph. This
analogy is presented in terms of direct currents governed by the Kirchoff
rules. To formulate it, let us be a little more specific about the model under
study.
Suppose our polymer has certain available conformations, and let us call

the conformations with letter C. There is potential energy landscape, which
means that there is certain energy U(C) associated with every conformation
C. Consider now a pair of conformations, say C and C′, such that they are
connected on the conformation graph; in other words, they can be trans-
formed one into another via a single Monte Carlo move. Consider the flow
between C and C′. Of course, this means, we should imagine a large number
(an ensemble) of computers independently running Monte Carlo simulation
of our system, and then we should ask what is number of copies switching
from C to C′ at the given time? Equivalently, we can speak of a probability to
find a single Monte Carlo process jumping from C to C′ at the given time. To
be specific, let us assume that C is higher in energy than C′: U(C) > U(C′).
Then, Metropolis criteria [17] accepts the move from C to C′ every time the
move is offered, we get that the flow from C to C′ is simply proportional
to the occupation number of C at the present time; apart from units and
proportionality coefficient,

IC→C′ = nC . (4.3)
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As regards the opposite moves from C′ to C, they are accepted with proba-
bility smaller than unity, namely exp [U(C′)− U(C)], so that

IC′→C = nC′eU(C′)−U(C) . (4.4)

Here and below, to save some writing, we omit the temperature factor, as-
suming kBT = 1; in other words, we pretend that potential energy U(C) is
measured in the units of kBT : U(C)→ U(C)/kBT .
It is convenient to rewrite equations (4.3) and (4.4) by introducing the

following notations. For every conformation C, we define the quantity

φC = nCeU(C) , (4.5)

and for every connection between C and C′, we define another quantity

RCC′ = emax{U(C), U(C′)} ≡ eU(C) . (4.6)

The nice thing about quantities φC is that in equilibrium, when occupation
numbers nC are governed by Boltzmann distribution nC ∝ e−U(C), the values
of φC become independent of C, a constant all over the conformation space.
Using φC and RCC′ , the master equations (4.3) and (4.4) can be presented in
the form

ICC′ ≡ IC→C′ − IC′→C =
φC − φC′

RCC′
. (4.7)

In this formula, it is now easy to recognize the Ohm’s law for direct currents,
which leads to the following physical interpretation.
We imagine that the conformational graph of the system is a network of

resistors. The resistance between nodes C and C′ is RCC′ . Governed by the
Kirchoff rules, there are potentials on each node, φC , and currents between the
nodes, ICC′ . The knowledge of these potentials and the current distribution
is equivalent to the full knowledge of the dynamics of the system in question.
As we understand perfectly well, the distribution of currents in the re-

sistor network is determined by the externally applied voltage. We have to
understand now the way to apply the external voltage such as to get the re-
sults relevant for the determination of p-fold or commitor. Before doing that,
it is useful to discuss one more equivalent formulation.

4.3.3 Diffusion Equation and Continuous (Off-lattice) Models

Given the flow I, we can write down the rate of change for the occupation
number at any site C. This is the sum over all neighboring sites C′ of the
difference between the flow out of C and into C:

dnC(t)
dt

=
∑

neighbors, C′
[−IC→C′ + IC′→C ] . (4.8)
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This can be conveniently rewritten taking into account equations (4.3) and
(4.4):

dnC(t)
dt

= −μCnC +
∑

neighbors, C′
nC′eU(C′)−U(C) , (4.9)

where μC is the connectivity (the number of connections) of the site C. Re-
member now that the Laplace operator Δ can be defined on an arbitrary
graph; its action on the arbitrary function fC is defined as

Δf = −fC + 1
μC

∑

neighbors, C′
fC′ . (4.10)

In terms of this operator, we finally obtain

d

dt
fC(t) =

√
μCΔ [

√
μCfC(t)] , where fC(t) =

(
nC(t)√
μC
eU(C)

)

. (4.11)

Without going too deeply into this subject, we point out here that this form
of equation allows to perform easily the generalization for the continuous
off-lattice limit. In this case,

√
μ is related to the local curvature of the

conformation space.

4.3.4 Stationary and Transient Regimes

In most cases, the computer experiment on protein folding or similar complex
dynamics is performed by running simulations starting from certain initial
site C0. This can be described by adding proper δ-function in the diffusion
equation (which we write here for simplicity in terms of n instead of f):

d

dt
nC(t) = μCe−U(C)Δ

[
nC(t)eU(C)

]
+ δ(t)δ (C0) . (4.12)

It is instructive to imagine another formulation in which there are (infinitely)
many simulations running simultaneously, so that we start certain number of
simulations per unit time, Q. In this case, the system as a whole is in station-
ary state, with occupation numbers nC independent of time and satisfying
the equation

0 = e−U(C)Δ
[
nCeU(C)

]
+Qδ (C0) . (4.13)

Importantly, this is not the equation for equilibrium, its solution is not Boltz-
mann distribution. The solution of this stationary diffusion equation is equiv-
alent to the determination of direct time-independent currents and potentials
in the resistor network.
Note, the quantity μC does not enter the equations for the stationary (time

independent) conditions, but does play important role in the non-stationary
transient regimes. This may seem to lead us into a trouble, given that our
goal is to study the commitor, which seems to be essentially non-stationary
quantity. This latter impression turns out wrong, as we show now.
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4.3.5 Direct Current Formulation of the First Return Problem:
Casino Problem and Its Easy Solution

The concept of commitor, as it is formulated above, is based on the classical
probabilistic ”first return” problem. Indeed, commitor of the state C is the
probability that the trajectory of the random walk on the graph, starting
from C will arrive for the first time into the folded state F before ever hitting
the unfolded state U . Let us consider the simple classical example [18].
Suppose a gambler arrives at the casino with certain amount of money x0

and keeps gambling indefinitely unless arriving at the desperate zero money
state (x = 0), in which case he/she is discarded. The question is this: what
is the probability that the player looses money (arrives for the first time at
x = 0) at the time t? The standard way to solve this problem is to realize
that the time-dependent probability distribution of the money at possession
of the gambler satisfies the diffusion equation:

∂nx(t)
∂t

= D
∂2nx(t)
∂x2

+ δ(t)δ(x− x0) , (4.14)

where D is an appropriate diffusion coefficient (which can be absorbed into
the time measurement units), and δ-functions describe the initial condition.
The central idea of this approach is to realize that the concept of first return
is embodied in the absorbing boundary condition:

nx(t)|x=0 = 0 . (4.15)

This boundary condition ensures that in the path integral solution of the
diffusion equation, all trajectories are discarded which ever visit the left half-
line (x < 0). Now, assuming nx(t) is found, the probability to arrive at
x = 0 at time t for the first time is given by the flux into x = 0: W (t) =
−D∂nx(t)/∂x|x=0. The corresponding solution is not difficult to find:

W (t) =
x0

2
√
πDt3/2

e−x2
0/4Dt , (4.16)

and the classical theorem [18] says that
∫∞
0 W (t)dt = 1: sooner or later,

gambler looses all money with probability one.
Here is now the simple solution of this problem based on the direct current

analogy (see also [19]). Consider semi-infinite line of resistors (or just a wire of
uniform resistance) going along the x-axis. In terms of analogy, the absorbing
boundary condition (4.15) means that the boundary is grounded, i.e., is kept
at the zero potential (4.5). Suppose now we feed a direct current into the
point x0 (of course, applying a constant voltage to the point x0). Then, the
whole statement of the theorem is that the current leaving the system through
the grounded terminal at x = 0 is equal to the current entering the system
through the terminal at x0 - which is trivial.
Of course, this simple solution comes from the use of stationary equa-

tion (4.13).
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4.3.6 Direct Current Formulation of the Commitor

Now we are prepared to formulate the way to determine the commitor of
any given state C using the direct current analogy. We understand that the
first arrival condition can be imposed by absorbing boundary conditions, or
grounding the corresponding sites. Therefore, the formulation is as follows.
Suppose all the sites U corresponding to the unfolded state are grounded,

as well as the site F corresponding to the folded state. Suppose further that
we feed a direct (stationary, time independent) current I into the site C. This
current flows partly to U and partly to F ; in obvious notations, I = IU + IF .
Then, the commitor is nothing but the fraction of current going into the F
terminal. According to the Ohm’s law, this can also be written in terms of
the corresponding resistances:

pfold(C) = IF
I
=

RCU
RCU +RCF

. (4.17)

It is instructive to consider here a simple example, which is the diffu-
sion in one-dimensional potential landscape U(x). Of course, in this case the
choice of reaction coordinate is trivial, there nothing but x. Nevertheless, we
can imagine that there are two ends of the diffusion interval, which we call
points U and F , and we want to know what is the probability to start from
some point C between U and F and arrive at F for the first time without
ever touching U . In this case, the resistor network is one-dimensional, all
resistors are connected in series. Remembering the expression (4.6), we see
momentarily that formula (4.17) yields

pfold(C) =
∫ U
C e

U(x)dx
∫ U
F e

U(x)dx
. (4.18)

It is clearly seen both in the example (4.18) and in the general formula
(4.17) that the commitor is always positive (non-negative) and never exceeds
unity - as it must be for the probability.

4.3.7 Direct Current Formulation of the Landscape

Our result (4.17) generates an insight into the general meaning of commitor
and its properties. For instance, we can proceed in the following way. Let us
ask what are the surfaces of pfold = const, and what is their topology.
To understand it, let us imagine let another experiment with the direct

current. Let us ground this time only the folded state site F , and let us feed
the current into the unfolded state sites U . In other words, the potentials
of the terminals at the folded and unfolded states are equal to φF = 0 and
φU = V , respectively. In this case, according to the Ohm’s law, the potential
at the arbitrary site C should be equal to

φC
V
=

RCF
RCU +RCF

= 1− pfold . (4.19)
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Thus, this potential essentially gives us the value of the commitor pfold. Of
course, this realization of the direct current model corresponds very directly
to the most common computer experiment in which we start from somewhere
in the unfolded region and look for the first arrival into the folding state.
The result (4.19) indicates that the topology of every surface of constant

commitor is such that it separates folded state from unfolded state; moreover,
and more general, every surface pfold = const = p0 separates the regions with
p < p0 and with p > p0. In particular, the commitor has no local maximum
or local minimum. Its only minimum is the global one at the unfolded state,
where it is equal to zero, and its only maximum is that at the folded state
where it is equal to unity. This confirms the intuition according to which the
commitor can be used as a reaction coordinate.
Now, as we mentioned in the beginning of this article, the central ques-

tion arises: what is the relevant free energy profile if we choose to use pfold
as the reaction coordinate? It turns out possible to address this question in
quite general form. IN this argument, we shall disregard the discrete char-
acter of conformation space graph and pretend to work with the continuous
conformations space.
Consider our latest direct current formulation, in which terminals are at

the folded and the unfolded states, and equipotential surfaces are simulta-
neously the surfaces of constant commitor. Since the current does not flow
along the equipotential surface, we can ask what is the resistance of the con-
formation space layer sitting between the surfaces pfold = p and pfold = p+dp.
Since these surfaces are equipotential, all resistors connecting them may be
viewed as connected in parallel. For them, the conductivities must be summed
together, which yields

1
R(p)

=
∑

C,p=const

1
RCC′

. (4.20)

Remembering the formula (4.6), it is natural to define Ueff(p) according to
R(p) = eUeff(p), and then we obtain

Ueff(p) = − ln
⎡

⎣
∑

C,p=const

e−U(C)

⎤

⎦ . (4.21)

Strikingly, this formula coincides with (4.2), except it does not involve any
assumptions regarding slow degree of freedom and the like. Instead of being
the definition of the statistical mechanics partition function as (4.2), formula
(4.21) describes the parallel connection of the resistors. What this formula
proves is that one can use the commitor as the reaction coordinate, with the
relevant free energy profile given by the formula (4.21). In particular, the
concept of the folding barrier is clearly formulated as the place with highest
resistance.
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It should be born in mind that equation (4.21) deserves further attention.
It may be possible that for some types of conformational space graphs our
approach here is too cavalier. For instance, the relation between the discrete
and continuous versions may deserve further attention. We may return to
this question in the future.

4.4 Culmination: So What?

The outcome of our analysis is an insight. We were trying to understand the
computer experiments in which commitor, or pfold is employed to study the
dynamics of protein folding. We found that, using the direct current analogy,
we can convince ourselves that pfold does indeed give rise to the reasonable
reaction coordinate, whose topological properties are reliably understood.
We gave also plausible arguments suggesting the effective free energy profile
along the direction in the conformation space which is characterized by the
quantity of pfold as a generalized coordinate. What remains to be a challenge
is to find an explicit expression of pfold in terms of microscopic coordinates.
This problem remains unsolved even for the lattice toy models, not to mention
real systems.
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5 Multiscale Computer Simulations for
Polymeric Materials in Bulk and Near Surfaces
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D-55021 Mainz, Germany

Abstract. We review some recent approaches to simulate polymer melts on dif-
ferent levels of description. The methods aim at a link between these approaches,
in order to faithfully simulate specific materials and eventually predict material
properties. In the present contribution this is explained in some detail for different
coarse grained bead spring models and different micro-meso mapping schemes for
bulk properties. In the case of polycarbonate near surfaces a combined approach of
mesoscale model simulations and QM-DFT calculations is presented.

5.1 Introduction

Polymer materials can be crystalline, amorphous (glasses, melts, rubber, gel)
or in solution. Especially polymer melts in the glassy state are standard mate-
rials for many applications (yoghurt cups, compact discs, housings of technical
equipment etc.). They combine relatively low specific weight and ductitility
with processing at moderate temperatures. In the melt state, polymers are
viscoelastic liquids where the crossover from elastic to viscous behaviour can
be adjusted by the chain length. Added to a solvent, polymers can be used as
viscosity modifiers and, depending on parameters, be either shear thickening
or shear thinning, as used e.g. for drag reduction. Crosslinking chains into a
disordered network results in gels or rubber. Applications range from gels in
(low fat) food, hydrogels in modern body care (nappies ...) via biological sys-
tems (cytoskeleton, DNA) all the way to classical elastomers (e.g. car tyres),
to name very few. Here, the interplay of connectivity, chain length and chain
stiffness determines the properties.
This wide range of applications is made possible by the variability of

physical properties, which is based on the many different chemical molecular
building blocks as well as on various molecular architectures and huge differ-
ences in molecular weights of polymers. It is the combination and the rather
delicate interplay of local chemical with more global architectural and size
properties, which makes macromolecules so versatile and interesting. This
means that many different length and time scales are relevant, and that un-
derstanding the properties on one scale is not at all sufficient to understand
the material properties.
The simplest polymers are chain molecules with identical chain segments,

repeat units or monomers. To give a very few examples, there are:
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PE (CH2)N polyethylene
PS (CH2(CH(C6H5))N polystyrene
PEO ((CH2)2O)N polyethylene oxide
BPA-PC ((C6H4)C(CH3)2(C6H4)CO3)N bisphenyl A polycarbonate

from the widely used PE (e. g. plastic bags) to the more complicated, but
technically very relevant polycarbonate BPA-PC (compact discs). Many other
cases exist, which can become very complex as especially biological exam-
ples demonstrate (DNA, proteins), where several different building blocks
are present in one huge molecule. While most polymers are not water solu-
ble, PEO has the exceptional property, that it is both water and oil soluble.
Other important water soluble polymers are polyelectrolytes, which in water
dissociate into ions and due to this are soluble even though their backbone is
hydrophobic in most cases. Those are currently in the center of research along
the border line between physics and biology, which is beyond the scope of the
present contribution. The typical simulation approaches for polyelectrolytes
however are conceptually very similar to the ones discussed here [2,3,4,5].
Understanding the relationship between atomistic structure and mate-

rial properties is the long-standing goal of fundamental materials research.
Polymeric materials offer many particularly challenging hurdles to this under-
standing, because of a unique dispersion of mechanisms of structure/property
relations over many decades in length and time scales, from (sub)atomic to
macroscopic. This feature of polymers has led to enormous success in de-
scribing generic aspects of their behavior, through scaling relations and di-
mensional arguments [6,7] as well as simulations based on simplified models
such as bead spring chains or even lattice models [1,4]. However, within the
large class of materials generically known as “polymers” exists an astounding
variety of material properties which must depend on specific differences in
molecular structure. A fundamental understanding of the mechanisms leading
to this important variety of properties requires the construction of theories
and models that can account for the atomic-scale differences among polymers.

5.2 Length and Time Scales for Polymer Simulations

To illustrate the importance of different time and length scales, we mention
a technically important quantity, the shear viscosity η of a polymer melt.
It contains the whole complexity of the problem. If one changes the process
temperature of a BPA-PC melt from 500K to 470K, the viscosity rises by a
factor of ten. This is a direct result of the local interactions on the atomistic
level as it could -in principle- also have been achieved by an equivalent change
of the chemical structure of the monomer. (The glass transition temperature
TG of BPA-PC is around 420K and different polymers display huge differences
in TG.) On the other hand, increasing the chain length by a factor of 2 also
shifts the viscosity by a factor of ten, since for melts of long chains , one
observes η ∝ N3.4. This power law is a universal property of linear polymers,
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and holds for all known polymers independent of the chemical structure of
the backbone. Thus, both material-specific as well as universal properties
produce a comparable variation of the macroscopic (dynamic) properties.
This variation can easily extend over several orders of magnitude.
At first sight, it might be tempting to perform an all-atom computer sim-

ulation of a melt of polymers in order to determine properties like viscosity,
morphology etc. However, there are two major complications. The first stems
from the choice of interaction potentials, while the second is related to the
many scales involved. An all atom simulation necessarily has to use an em-
pirical force field. All quantum simulations (Car Parinello density functional
simulations, path integral quantum Monte Carlo or combinations thereof) are
still confined to very small systems and orders of magnitude slower than force
field approaches [1,2]. The precondition for such an approach is an empirical
energy function for the interaction of all atoms in the system. This deter-
mines the force field to solve Newton’s equations of motion for the system.
Though conceptually straight forward, such an attempt contains a number
of unsolved problems and complications. First, though usually not consid-
ered, are quantum effects. One might think that typical temperatures for
macromolecular systems (room temperature and higher) are well above the
Debye temperature of the relevant atoms. This is true for the carbon atoms,
however, not necessarily for the many hydrogens present.Their thermal de
Broglie wave length at room temperature is about 1Å. In a paper by Mar-
tonak et al. [8] employing path integral quantum Monte Carlo simulations of
a PE crystal revealed, that even at room temperature quantum effects are
crucial to understand their anisotropic thermal expansion. This is obviously
a rather special example. However, it should be kept in mind as a general
sign of caution. Secondly, for the force field the intra-molecular interactions
can be derived from a proper parameterization of quantum calculations on
chain fragments. However to parameterize the inter-molecular or non bonded
interactions, usually experimental quantities like the heat of vaporization of
low-molecular weight liquids are used. There, additional difficulties can arise
from the quality and availability of experimental data. Moreover, it is often
impossible to optimize all properties to the same degree of accuracy and con-
fidence. Thus, one has to be very careful and there is no single force field for
a system which, without further verification, can be used at significantly dif-
ferent temperatures or compositions. Hence, there is NO universal force field.
In principle, a new parameterization has to be performed for every new set of
simulation parameters. Keeping this in mind, force field simulations can be
very useful and have provided important insight into microscopic properties.
Typical examples can be found in the overviews [3,5].
Whether such a fully atomistic simulation, if possible, would be useful

at all, is questionable, since it would provide an enormous amount of data.
Almost all the generated information would be irrelevant for the questions
under consideration, e.g. the above mentioned viscosity η. In order to make
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suggestions for material improvements, or to qualitatively and quantitatively
understand certain properties, it is crucial to structure and properly inter-
pret the results rather than just collect data. This also is often easier with
simplified models.
This leads us to the second problem field, the main topic of this article.

Polymers can be characterized by a hierarchy of different length and especially
time scales, which span a wide range. Fig. 5.1 illustrates this and shows the
typical range needed.
On the microscopic level the properties are dominated by the local vibra-

tions of bond angles and lengths. The typical time is of 10−13sec as given
in the figure resulting in a simulation time step to integrate Newton’s equa-
tions of motion of about 10−15sec. This Å-regime is well characterized by
the bond angles and bond lengths resulting from the quantum mechanical
energy levels. Up to torsional degrees of freedom, chains are in their vibra-
tional ground states, at typical experimental temperatures. The properties
on this level are solely determined by the detailed chemical structure of the
molecules involved.
On a more coarse grained level, one cannot resolve all the atomistic details

of the chains any more. The chain looks like a more or less flexible thread. This
is the universal, entropy-dominated coil regime. The many possible confor-
mations of the chains and the many ways to pack chains in a melt determine
the morphology. In many questions, the intra-chain entropy plays the most
important role. However, once two states of similar intra-chain entropy are
available (e.g. chains in a mixture of two different polymer species A and B
and in the two phase regime of an A-rich and a B-rich phase) tiny energy
differences in the interaction, originating from the microscopic structure, of
order O(kBT/N) are sufficient to change the morphology completely and to
drive the phase separation. A striking illustration of this fact is, that even
protonated and deuterated polystyrene phase separate, if the chains are long
enough [9]. On the mesoscopic level many properties can be understood on
the basis of simple coarse grained (bead spring) models. Characteristic time
and length scales, as they are present in typical experiments are indicated in
Fig.5.1. On the even coarser level, the semi-macroscopic level the behavior
is dominated by the overall relaxation of conformations of the objects. The
typical overall relaxation time, depending on chain length varies between N2

for short and N3.4 for longer chains. As explained in the beginning, prefac-
tors originating from the microscopic interaction of the monomers, cause an
equally large variation of scales. The resulting times can easily reach seconds.
If one approaches the glass transition temperature even much longer charac-
teristic times can be observed. Thus a satisfactory numerical description of
material properties needs a combination of both aspects.
This illustrates the long standing challenge within the modeling of com-

plex polymer materials, to develop methods which allow to cover the range
from microscopic to mesoscopic and then on to the semi-macroscopic regime.
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Fig. 5.1. Polymers exhibit phenomena on many length scales (from entire devices
down to electrons) and associated time scales (from years to femtoseconds). Start-
ing from the top left side, one can observe the overall morphology of a polymer
material. Looking a little bit more closely, e.g. by marking a chain in a melt ore
dense solution of otherwise identical chains, the individual polymer can be observed
only as a very pale shadow. A typical spatial extension of the shadow is given by
the overall coil diameter, as indicated. The characteristic time for this picture to
change can vary dramatically depending on chain length and temperature, starting
at about 10−4s for short chains and ’high temperatures’, with essentially no upper
limit. Looking again more closely, more of the polymer structure is revealed. This
is the universal, entropy dominated coil regime. Again the variation in time can be
very large, cf. text. Typical times, as they are present in many experiments, are in-
dicated. Only if the objects are examined much more closely, chemical details of the
polymers can be identified. There local chemical details govern the properties and
all bond lengths, angles etc. are determined by the energy levels, originating from
quantum mechanics. The lower time limit is determined by the highest frequency
of oscillations, which depending on the model used are the bond length or bond
angle oscillations. To study excited states or reactions, the electronic structure is to
be considered and quantum methods are required. Methods for treating individual
scales are well developed. The challenge is to connect them systematically.



148 Cameron Abrams, Luigi Delle Site, and Kurt Kremer

Thus one has to construct suitable links or mapping schemes, which con-
nect the different approaches. The successful mapping of an atomistic to a
mesoscale model has the advantage that, on the mesoscopic level, time and
length scales are accessible that are far beyond the reach of atomistic sim-
ulations. Thus, qualitatively different physical problems can be treated. A
good mesoscale model preserves enough of the original chemical identity of
the atomistic model, that it does locally not behave like a generic Gaussian
coil, which it has to do on huge length scale. It contains just enough in-
formation to reproduce certain aspects of, say, polystyrene or polypropylene
chains under the corresponding conditions. It is no surprise that in recent
years, a number of atomistic-to-mesoscopic mappings have been published;
a review encompassing scale bridging from electronic to macroscopic degrees
of freedom, cf. Fig.5.1, is presented in Ref [3]).
Moreover, it has turned out that coarse-grained models are useful not

only in their own right to study large scale phenomena. They are also a reli-
able tool for the generation of well-equilibrated atomistic structures, provided
one can perform an inverse mapping from the mesoscopic model back to a
fully atomistic model which can then be analyzed. In many cases, the fully
atomistic model is needed for comparison with experiment because the experi-
mental information often necessarily involves atoms, like in nuclear-magnetic-
resonance (NMR) spectroscopy [10], neutron scattering [11]or positron anni-
hilation spectroscopy [12].

5.3 Dual-Scale Modelling Ansatz

5.3.1 Mesoscopic Models in Bulk and Near Surfaces

Perhaps the simplest particle-based continuous-space representation of a poly-
mer molecule is the ‘bead-spring’ model, (Fig. 5.2), in which point-mass beads
are tethered to one another by massless springs. It has served for twenty years
as the prototypical polymer molecule in computer simulations of single macro-
molecules [4,13,14,15]. More recently, it has gained popularity specifically
for simulation studies of a wide variety of dense polymer systems, including
melts, [14,15,16] gels, [17,18,19,20] brushes, [21,22,23] to name a few exam-
ples. (By ‘dense’, we mean an excluded volume fraction greater than about
0.4, typical for polymer melts.) The model’s appeal for such studies stems
not only from its simplicity, but also the way it allows for an approxima-
tion of the polymer molecule excluded volume. Realistic simulations of dense
systems must include excluded volume effects, because they dominate the
static and dynamic liquid properties [7]. Moreover, the bead-spring model
serves today as a basis for systematic coarse-graining, which seeks to develop
computationally tractable representations of atomistically detailed polymer
molecules [3].
Realizing that a faithful representation of excluded volume is essential

in dense liquid simulations, a systematic study of these models has been
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Fig. 5.2. Schematic of a bead-spring polymer chain. d0 is the effective bead diam-
eter, l0 is the average bond length , and θ is a bond angle. From [24].

performed by Abrams and Kremer [24,25]. For this they considered the rel-
atively simple case of linear chains with a single bead diameter, d0, and a
single prescribed average bond length, l0, as depicted in Fig. 5.2. The under-
standing of how the physical properties derived from the simulations depend
on the choice of these parameters is essential for the choice of a particular
coarse-grained model. The consequences turned out to be crucial for both
static and dynamic aspects. We here shortly review results, which were ob-
tained for bulk melts and thin confined melt films, both composed of simple,
freely-jointed, bead-spring polymer chains. l0/d0 was chosen to vary between
0.73 and 1.34.
The polymer chains are modeled as sequences of N identical particles,

connected sequentially by massless springs. All particles in the system, except
bonded neighbors along a chain, interact according to a purely repulsive
shifted 12–6 Lennard-Jones potential, cut off at r = 21/6 σ:

ULJ (rij) =

⎧
⎨

⎩

4ε
[(

σ
rij

)12
−
(

σ
rij

)6
+ 1

4

]

rij < 21/6σ;

0 rij ≥ 21/6σ,
(5.1)

with the standard LJ units [ε] = kT . All beads have the same excluded
volume diameter, d0, defined as the separation at which the Lennard-Jones
potential has a value of 1kT . With this choice of potential, d0 = 1 σ. Bonds
between adjacent neighbors (i,i + 1) along a chain are enforced by a stiff
harmonic potential with a given average bond length, l0.
The systems were simulated in the NV T ensemble, using a Langevin

thermostat, [14] with friction Γ = 0.5 at constant T = 1.0. For this they
ran systems of M = 80 chains of length N = 50 and a number density of
ρ = 0.85σ.
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For the case of thin films or bulk systems with a solid surface a standard
potential Uw(z) models flat repulsive walls at z = 0 and z = Lz, the z-
boundaries of the simulation cell:

Uw (z) = U10−4 (z) + U10−4 (Lz − z) ; (5.2)

U10−4 (z) =

{
2πεwσ2

w

[
2
5

(
σw

z

)10 − (σw

z

)4 + 3
5

]
z < σw;

0 z ≥ σw.
(5.3)

We here only report the variation of the polymer liquid structure. For the
resulting changes in the dynamics we refer to [25]. In Fig. 5.3,
the intermolecular monomer radial distribution functions, g(r), are shown

for the various melts, along with g∗(r) for the corresponding monomeric fluid.
It is clear from these data that the liquid structure is quite sensitive to l0/d0.
This holds for both cases, whether one considers systems of fixed number
density ρ, or excluded volume fraction φ. One can define a correlation length
λ as the radius at which amplitudes in the oscillations of g(r) become less
than 1%, with λ∗ ≈ 5σ being that of the simple monomer liquid. One observes
that λ ≈ λ∗ for the melts with l0/d0 > 1, while when l0/d0 < 1, λ < λ∗ and
it decreases with l0/d0. When the bond length is below the excluded volume
diameter, monomer-monomer correlations weaken, whereas these correlations
are little if at all affected when l0/d0 > 1. The manner in which chains pack
gives rise to the less ordered liquid structure for l0/d0 < 1, and the similarly
ordered liquid structure for l0/d0 > 1, relative to the simple fluid. Hence, by
simply changing l0/d0 from about 1.3 to 0.7, one finds a gradual transition
from polymeric liquids whose structure is determined primarily by monomer
packing to polymeric liquids whose structure is determined by intramolecular
configurational entropy of the chains.
In the case of a polymer melt near a flat hard wall the effects are even

more pronounced. In Fig. 5.4 the resulting monomer density profiles, ρ(z),
scaled by the bulk number density, 〈ρ〉, for each of the l0 cases, as well as
ρ∗(z) for a monomeric fluid at ρ = 0.85 σ−3 are given.
The wall potentials were placed at z = 0 and z = Lz, and the data

in Fig. 5.4 are symmetrically averaged with respect to the z = Lz/2 center
plane. In all cases, ρ(z) reveals wall-induced layering in the monomer density.
Roughly speaking, relative to the simple monomeric fluid, layering is strongly
suppressed in melts for which l0/d0 < 1. This suppression has been observed
previously only for systems of lower number density and l0/d0 = 0.97 [26].
What is even more striking is that, judging from peak intensities, the layering
appears to be slightly enhanced, relative to the simple fluid, in the melts for
which l0/d0 > 1.
In a similar way the chain diffusion is very sensitive to the choice of

l0/d0. A commensurate ratio leads to a significantely slowed down diffusion
constant, as local cages in the liquid can nicely be created by the system.
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Fig. 5.3. Intermolecular radial distribution functions, g(r), for bulk bead-spring
melts. Solid curves correspond to samples with ρ = 0.85 σ−3, and broken curves to
those melts for which l0/d0 < 1 and fixed φ = 0.445. Labels denote bond length,
l0. g∗(r) was computed from a simple repulsive monomeric fluid at ρ = 0.85 σ−3.
From [24].
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Fig. 5.4. z-dimension scaled density profiles, ρ(z)/ 〈ρ〉, for confined bead spring
polymer melts, plotted over the domain 0 ≤ z ≤ Lz/2. Labels denote bond length,
l0. ρ∗(z) was computed from a simple repulsive monomeric fluid at 〈ρ〉 = 0.85 σ−3,
where 〈ρ〉 is ρ∗(z) averaged over 0.8 < z < Lz − 0.8. From [24].



5 Multiscale Computer Simulations for Polymeric Materials 153

This maximises the bead entropy, but at the same time creates significant
barriers for diffusion [25].

5.3.2 Systematic Molecular Coarse-Graining

5.3.2.1 Mapping Schemes
We here compare schemes of coarse graining for polycarbonate melts which
takes the above considerations into account. The basic original idea was pre-
sented in detail in Refs. [27] and [28]. These papers describe a mapping scheme
for bisphenol-derived polycarbonates in which each repeat unit is replaced by
two spherical beads; referred to as a “2:1” mapping. Here we focus on a re-
lated scheme in which the repeat unit is replaced by four beads, a “4:1”
mapping. This is represented schematically in Fig. 5.5.

Intramolecular potentials

Lennard-
Jones
spheres

Mapping
points

Atomistic Bead-spring

Same vdW
excluded
volume

governed by distribution
functions which are
averages over the known
torsional energy states
of the atomistic chain.

conformations are
Bead-spring chain

of mean force

Fig. 5.5. A schematic representation of the 4:1 mapping scheme for coarse-graining
of bisphenol-A-polycarbonate (BPA-PC). A chain-ending repeat unit is shown.
From [29].

All results are obtained via standard molecular dynamics simulations of
bisphenol-A-polycarbonate liquid samples containing 80 chains, each chain
bearing 10 chemical repeat units, at a mass density of 1.055 g/cc and a
temperature of 570 K. Details on the simulation technique can be found
elsewhere [27,30].
The key features of this model are as follows. The bead centers corre-

spond to specific groups of atoms in the molecular structure. Bead centers
are mapped to the carbonate carbon, the isopropylidene backbone carbon,
and one to each of the phenyl ring centers of mass. With these definitions of
the mapping points, the molecular structure of the repeat unit constrains al-
lowable bead-bead distances and bead-bead-bead angles along the coarsened
backbone. One important exception is the phenylene-carbonate-phenylene
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angle, which is constrained to satisfy a distribution of angles which reflects an
average over the atomic-scale torsional states “within” this bead. These con-
straints are translated into intramolecular potentials used directly in molec-
ular dynamics simulations of these coarsened bead-spring objects. Further-
more, the bead diameters are chosen such that the overall excluded volume of
the repeat unit as closely as possible matches that known for BPA-PC from
equation-of-state predictions [31]. This prescribes intermolecular potentials
which are also included in the MD simulations.

5.3.2.2 Coarse Grained Liquid Structure
We first examine the structure of the simulated BPA-PC liquids. Of particular
interest in this discussion are as before the radial distribution functions, g(r),
obtained from bulk simulations, and depth profiles obtained from simulations
of the bead-spring liquids confined to slit-pore geometries. In Fig. 5.6, we show
comonomer-specific g(r)’s for the “4:1” and “2:1” liquids. These liquids were
composed of chains of ten repeat units each, which corresponds to chains
of 23 and 43 coarse grained beads for the 2:1 and 4:1 mapping schemes,
respectively. From this data, it is evident that the liquid structure for the
different mapping schemes is quite different, as to be expected from the results
of the simple bead spring models discussed before. Most notable are the long-
ranged decaying oscillations in g(r) for the 2:1 system. This starkly resembles
the g(r) of simple dense liquids of spherical particles [32]. In contrast, such
long-lived correlations are not apparent in the g(r) from the 4:1 simulations.
The differences in the liquid structure are a direct result of the imposed
intramolecular structure of the two mapping schemes.
This difference in liquid structure is again evident if we consider how the

bead-spring objects pack next to a flat wall. In Fig. 5.7, we show the depth
profiles of carbonate and isopropylidene beads obtained from sampling over
liquids equilibrated in confining slit pores. Both the density of the adsorbed
layer and the decay length of the density oscillations are much higher for the
2:1 liquid than the 4:1 liquid. This arises again because of the commensura-
bility between bond length (1.24 σ) and bead diameter (1 σ) in the 2:1 model.
The above discussed systematic studies of the effects of l0/d0 on chain pack-
ing in dense melts of flexible bead-spring chains clearly demonstrates that
the coarse-grained liquid structure is extremely sensitive to the relationship
between these two lengths. [24,25].
The resulting different packing also in the present case has significant in-

fluence on the dynamics as well. It turns out, as expected from [25], that
the 4:1 chains move more quickly than the 2:1 chains as a result of the much
lower sphere-packing efficiency in the 4:1 melts vis-à-vis the 2:1 melts. This
high packing efficiency, demonstrated by the large nearest-neighbor peak in
g(r), means that each bead in the 2:1 melt has many more excluded vol-
ume interaction partners on average than do beads in the 4:1 melt. Hence,
the bead-specific friction, or resistance to accumulation of mean-squared dis-
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Fig. 5.6. Carbonate-carbonate (“C-C”) and isopropylidene-isopropylidene (“IP-
IP”) intermolecular radial distribution functions from MD simulations of N=10
BPA-PC: comparison of (a) “4:1” and (b) “2:1” molecular coarse-graining resolu-
tions. From [29].
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Fig. 5.7. Density depth profiles of carbonate (“C”) and isopropylidene (“IP”)
beads from MD simulations of N=10 BPA-PC confined in a slit pore: comparison
of (a) “4:1” and (b) “2:1” molecular coarse-graining resolutions, from [29].

placement, is higher in the 2:1 liquids. This slowdown in the bead motion for
the 2:1 melt means that more simulation time steps are required to produce
the necessary amount of average molecular rearrangement for equilibration,
relative to the 4:1 melt. As a result, though more complex, the simulations
with the 4:1 mapping scheme use much less computer time than those with
the 2:1 mapping scheme. Despite these differences, both models carry the
essential microscopic information. When they are used to reconstruct an all
atom ”sample” the resulting structures from both models are very similar
(for T = 570K ) [29].
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5.4 Specific Surface Effects: BPA-PC Near a Ni Surface

For many applications the understanding of organic materials near metal
surfaces is technically very importnant. Polycarbonates near a nickel sur-
face is such an example. The idea of combining coarse-graining models for
polymers with ab initio Density Functional Theory (DFT) calculations for
small molecules analogues of polymer chemical subunits, can result particu-
larly useful when polymers interact with interfaces where local chemistry may
influence global properties of polymer systems. Such an approach would rep-
resent a reasonable compromise between a local quantum-based, but compu-
tationally expensive, description of the relevant polymer-surface interaction
and simplified bead-spring models which allows simulations of large polymer
systems. Within this schematic framework, recently, the particular case [30]
of BPA-PC (Fig.5.8) near a Ni {111} surface (see Fig.5.9) was treated.

CH3

CH3

CO C
O

O

iii.
ii.

iv.

OH
CH3

CH3

CH2
C
O

OHHO

(a)

i.(b)

Fig. 5.8. (a) Chemical structure of the repeat unit BPA-PC. (b) Analogous
molecules used in the ab initio studies: (i) carbonic acid, (ii) propane, (iii) ben-
zene, and (iv) phenol, from [30].

The general strategy consists in cutting the chain into comonomeric mole-
cules, small enough to study the interaction with the surface and examine
the adsorption of each on a Ni {111} surface. In this case we considered three
molecules analogous to the comonomeric subunits of BPA-PC [Fig.5.8(b)]:
carbonic acid (i), propane (ii) and benzene (iii) (phenol (iv)), representing
carbonate, isopropylidene, and phenylene, respectively. The first important
result to emerge from the ab-initio calculations, is that the carbonic acid and
propane molecules do not stick to the surface. In fact the adsorption energy
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(b)

(c)

(a)

Fig. 5.9. The multiscale model of BPA-PC on nickel. (a) The coarse-grained repre-
sentation of a BPA-PC segment; the coarse-grained beads are transparent spheres,
superimposed on the underlying chemical structure, where the carbon atoms are
green, the oxygens red, and the hydrogens white; (b) Coarse-grained model of an N
= 20 BPA-PC molecule, with ends adsorbed on a flat surface; configuration from a
160-chain liquid simulation. (c) A phenol molecule adsorbed on the bridge site of a
(111) nickel surface; configuration computed via CPMD simulation, from [30].
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in both cases is of the order 0.01eV and is independent from the location of
the molecule above the different surface sites, i.e. the molecule experiences
an effective uniform hard wall. Benzene, which from our calculations shows
a fairly strong adsorption in isolation, 1.05eV , is sterically hindered to ad-
sorb when incorporated into a BPA-PC chain, due to neighboring carbonate
and isopropylidene groups. However, phenoxy end groups are not in this way
sterically hindered, and hence may adsorb strongly to the surface. The lat-
ter aspect can be treated in a more complete way by considering phenol,
which, due to the presence of the oxygen, better represents the phenoxy end
groups. From the extensive DFT calculations emerges a strong chemisorp-
tion of phenol on nickel surface, the energy being 0.91eV , this leads us to
the conclusion that indeed the probability that there is chemisorption of
end-chains on the surface is extremely high. The quality of the DFT calcu-
lations is assured by comparing recent DFT work on the Ni(111)/benzene
system[33,34,35], with experiment and noticing that it gives us an adequate
description of the strength of the adsorbate-substrate bond, the error being
20%, which is sufficiently small for our present purposes. The next step con-
sists in incorporating these results properly within the coarse-grained model
described in previous sections. This approach allowed us to show how the
interplay of entropic and energetic contributions can alter the structure of a
polymer melt near a metal surface. In particular, we predict that polycar-
bonate chain ends adsorb strongly to a nickel surface next to a polycarbonate
liquid. This fact may have important consequences and applications in differ-
ent technological fields. For the technical part of the ab initio calculations we
used the plane-wave pseudopotential CPMD code, [36], implemented with
finite-temperature density functional theory (FEMD) [37,38], using PBE[39]
generalized gradient approximation (GGA). Several geometry optimizations,
starting from plausible structures compatible with possible orientations of
the respective comonomers in a polymer chain, were performed at each of
the four high-symmetry sites of the {111} surface. The adsorption energy
(Ead), defined as the energy of the adsorption system relative to the clean
surface and isolated molecule, characterizes the strength of the interaction
of each submolecule with the surface. DFT calculations also provided a ba-
sic understanding of the possible mechanism of adsorption of the end-chains.
We found that in the most energetically favourable configuration the center
of mass of benzene and phenol lies over the bridge site and the molecular
orientation is parallel with respect to the surface. The strength of the inter-
action rapidly decays as a function of the incidence angle (0.05eV beyond 40
degrees) as well as of the distance from the surface (0.03eV beyond 3.0Å).
This causes near the surface to obtain rather unusual conformations, which
best can be characterized by the similarities to two-end adsorbing brushes in
contact to a surface on one side and to a bulk melt on the other side [30].
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5.5 Other Approaches: Automatic Coarse-Graining

As shown above developing a reliable mesoscopic polymer model is a cum-
bersome process. A number of different steps, which may vary between ap-
proaches have to be taken: (i) The degree of coarse graining, how many real
atoms per coarse-grained bead, has to be chosen and the positions of the
coarse-grained (CG) beads in relation to the atoms have to be determined.
(ii) The form of the intra-chain and inter-chain potentials need to be chosen,
if they are not directly derived from the distributions. (iii) Their free param-
eters, especially for the nonbonded interactions, have to be optimised in a
way that the CG model reproduces the structure of the model. While (i) and
(ii) are intellectual challenges, (iii) often is a menial task which should be
automated to the extent possible. This chapter describes a recent approach
by Müller-Plathe and coworkers to systematically and automatically param-
eterize interaction parameters of mesoscale models for polymers in solution.
Its purpose is to be able to carry out the parameterisation (iii) for a given
degree of coarse graining (i) and form of the potential (ii) quickly and repro-
ducibly, so that every physical model can be evaluated with a set of optimum
parameters. First, reference data have to be obtained, such as structural
properties of the polymer of interest. In the present study they concentrated
on the sodium salt of poly(acrylic acid) (PAA) as an aqueous solution of
about 2 wt.%. They were obtained by performing an atomistic simulation
of an oligomer (23 monomers) solvated by about 3200 water molecules. The
coarse-grained model contained one bead per monomer centered at the centre
of mass of the atomistic monomer, reducing the number of polymer atoms
by 8. More importantly, the coarse-grained model disposed of the explicit
solvent, so that the total number of sites was reduced from approximately
3350 to 23, Fig.5.10.

Fig. 5.10. An example for mapping between atomistic and mesoscopic models: The
sodium salt of poly(acrylic acid) (2 wt.%) in aqueous solution. From [40].
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The coarse-grained intrachain interactions consisted of a harmonic bond
potential, a Gaussian expansion of the multiple-minima bond-angle potential
and a short cosine expansion of the dihedral angle potential. The piecewise
connected non bonded potential between monomers is of the form

V (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1[(σ1/r)8 − (σ1/r)6] r ≤ σ1
ε2[sin(

(σ1−r)π
(σ2−σ1)2

] σ1 < r ≤ σ2
ε3[cos(

(r−σ2)π
(σ3−σ2)

− 1]− ε2 σ2 < r ≤ σ3
ε4[−cos( (r−σ3)π

(σ4−σ3)
+ 1]− ε2 − 2ε3] σ3 < r ≤ σ4 = rcutoff

This choice at first sight appears complicated and arbitrary, however it
has proven useful [41], and it contains enough flexibility to encompass an
effective description of the solvent. For a more detailed discussion see [41].
The reference data include distributions of bond lengths and bond angles as
well as radial distribution functions RDFtarget(r) obtained from the atomistic
simulation but calculated for the coarse-grained beads.
The 23-mer of PAA with the CG model was simulated as an isolated

molecule in space, in other words the same oligomer as with the atomistic
model. The CG parameters were adjusted, until the target RDFs and other
distributions were reproduced satisfactorily. We defined a least-squares merit
function f(p1, p2, ...) which was to be minimised

f({p1, p2, ...}) =
∫ cutoff

0
w(r)[RDF (r, {p1, p2, ...})−RDFtarget(r)]2dr

(5.4)
where p1, p2, ... are the parameters in the optimisation set and w(r) is an op-
tional weighting function. For the minimisation, we use a standard amoeba
simplex scheme [42]. Note, that every evaluation of f involves an entire molec-
ular dynamics (or Brownian dynamics) simulation of the CG system, includ-
ing equilibration, check for convergence etc. At this point, the apparently
straight forward scheme can become technically tricky and computationally
expensive, which they noted already in the first application of the automatic
parameterisation method, namely the development of atomistic force fields
from experimental data [43]. The typical agreement of the target RDF of PAA
and two CG RDFs, which can be obtained after parameter optimisation is
shown in Fig.5.11.
With the CG model parameterised, the simulation was extended to much

longer chains of PAA in aqueous solution. The results for the calculated
hydrodynamic radius of such chains match well the results from dynamic
light scattering (Fig. 5.12).
This shows that the CG model retains enough of the true identity of PAA

to reproduce its structure on a scale much larger than that of the atomistic
model from which it was developed. In the meantime this approach has been
extended not only to other polymers in solution but also to bulk polymer
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Fig. 5.11. Monomer-monomer radial distribution function for poly(acrylic acid),
first and second neighbours excluded. The target function from the reference atom-
istic simulation is shown as well as two different coarse-grained models after con-
vergence. From [40].

Fig. 5.12. The hydrodynamic radius of poly(acrylic acid) in aqueous solution as a
function of molecular weight. From [44].
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melts which allow for an all atom simulation of oligomers [43]. Compared
to the previous ansatz, this is a more pragmatic way, which in special cases
leads more directly to the desired results.

5.6 Conclusions, Outlook

In spite of all progress made over the last years a number of challenges remain.
On each level of description, new and improved methods have been developed.
Still better models are needed. Most important, however, is the controlled and
systematic improvement of links between the different simulation schemes,
i.e.:

• Systematic coarse graining procedures, including the inverse mapping step
are to be improved and developed. Steps must cover the Micro (many
atoms) < − > Meso (many monomers) < − > Macro (many chains)
regimes and link to quantum simulations at the low end and to self con-
sistent field calculations and finite element like approaches at the upper
end.

In order to achieve the longstanding goal of predicting macroscopic ma-
terial properties from first principles, much effort is needed over the coming
years. In particular, a few key ingredients have to be developed, such as

• quantum simulations of reasonably sized systems (Car Parinello techniques,
path integral quantum Monte Carlo, combinations of both): coupling elec-
tronic and conformational degrees of freedom (beyond the ansatz of [30])

• improved methods to parameterize and validate force fields for atomistic
classical molecular simulations, especially suitably parameterized inter-
molecular interactions (for polar molecules)

• new methods for static and dynamic studies on the semimacroscopic to
macroscopic level, such as dissipative particle dynamics for composite ma-
terials based on the microstructure of the polymers

This needs a significant interdisciplinary coordinated effort of researchers
coming from different fields of expertise. Sizeable projects are underway or
have been performed at a number of places in the world and range from more
software development oriented activities, such as the NEDO project in Japan
and European activities within the Training and Mobility program to more
basic method development oriented activities like the materials simulation
competence center funded by the German ministry of science and technology
which is coordinated by our group.
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Abstract. The simulation of complex fluids naturally involves widely different
length scales. Integrating out parts of the microscopic degrees of freedom leads to
the concept of effective interactions and provides a “coarse-grained” picture which
can be simulated much more efficiently than a full microscopic model. This approach
bridges length scales in complex fluids. In this chapter, we justify this procedure on
a Statistical Mechanics level and apply it to a variety of different systems ranging
from charged colloidal dispersions and polymer solutions (including star polymers
and dendrimers) to mixtures of colloids and polymers and binary colloidal mixtures.
Problems arising when this concept is transferred to nano-scales are pointed out.
Finally the much harder problem of bridging different time scales in complex fluids
is briefly discussed.

6.1 Introduction

While early Monte Carlo (MC) and Molecular Dynamics (MD) methods were
historically designed to simulate simple fluids, represented, e.g., by the hard
sphere or Lennard-Jones models, these agorithms are ill adapted to deal with
fluids of increasing complexity, or “soft matter”, because of the simultane-
ous presence of widely different length and time scales. Consider for example
dispersions of spherical (e.g. polystyrene balls), rod-like (e.g. the “tobacco
mosaic virus”, TMV) or lamellar (e.g. clay) charge-stabilized colloidal par-
ticles in water. There are at least three length scales: the microscale of the
solvent molecules, the nanoscale of the width of the electric double-layers
formed by the co- and counterions (approximately equal to the Debye screen-
ing length), and the mesoscale of the colloidal particles (typically hundreds of
nanometers). There are at least as many relevant time scales (although they
are not always as clearly separated), and direct simulations based on a fem-
tosecond time scale, or MC trial moves over molecular distances, are clearly
inadequate to describe large scale phenomena over times of milliseconds and
over distances of several microns. Returning to the case of charged colloids,
the practical limit of “brute force” approaches, even neglecting the molecular
nature of water (replaced by a dielectric continuum) is a total charge of less
than 100e per polyion [1].
In this chapter we describe systematic coarse-graining procedures which

lead to effective interactions between the largest, mesoscopic particles in mul-
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ticomponent, multiscale fluid mixtures. These effective interactions follow
from a rigorous “tracing out” of microscopic degress of freedom, and can be
used in standard MC or MD simulations of samples involving only the large
particles which now play the role of molecules in atomistic simulations. After
a formal Statistical Mechanics justification of the coarse-graining procedure
in Sect. 6.2, it will be successively applied to interacting electric double-layers
(Sect. 6.3), to polarizable dielectric media (Sect. 6.4), to solutions of linear
polymers (Sect. 6.5), star polymers and dendrimers (Sect. 6.6), to colloid-
polymer (Sect. 6.7) and binary colloid mixtures (Sect. 6.8). In Sect. 6.9 the
new challenges of coarse-graining nanoscale rather than mesoscale colloidal
systems will be briefly considered, with biomolecular (e.g. protein) solutions
in mind. Some conclusions will be drawn in Sect. 6.10.
It is worth stressing that this chapter will deal almost exclusively with

the bridging of length scale gaps in complex fluids. The problem of how to
cope with widely different time scales is far more difficult for supramolecular
systems, and the corresponding methodology is still in its infancy.

6.2 Efficient Coarse-Graining
Through Effective Interactions

An efficient statistical description of multi-component systems involving par-
ticles of widely different sizes requires a controlled-coarse-graining which may
be achieved by integrating (“tracing”) out the degrees of freedom of the ma-
jority components of “small” particles, which may be solvent molecules, mi-
croscopic ions (“micro-ions”) or monomers of macro-molecules. For the sake
of simplicity, consider an asymmetric binary “mixture” of N1 “large” spher-
ical particles, with centres of positions {Ri} (1 ≤ i ≤ N1), and N2 � N1
“small” particles at positions {rj} (1 ≤ j ≤ N2). Restriction will be made
to thermodynamic equilibrium states. If classical statistics apply, integration
over momenta is trivial, and the focus will be on configurational averages.
The total potential energy of the mixture may be conveniently split ino three
terms:

U({Ri}, {rj}) = U11({Ri}) + U22({rj}) + U12({Ri}, {rj}) (6.1)

At a fixed inverse temperature β = 1 / kBT , the configurational part of the
Helmholtz free energy F of the two-component system may be formally ex-
pressed as:

exp(−βF ) = Tr1 Tr2 exp(−β U)

= Tr1 exp(−β U11)Tr2 exp(−β(U12 + U22))

= Tr1 exp(−β U11) exp(−β F2({Ri}))

= Tr1 exp(−β V11({Ri})) (6.2)
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where the short-hand trace notation implies integration over the configuration
space of species 1 or 2, i.e.

Trα =
1
Nα!

∫

d3Nαr

V11({Ri}), the effective interaction energy of the large particles, is the sum
of their direct (or bare) interaction energy U11, and of the configurational
free energy of the fluid of small particles in the “external” field of the large
particles F2; the latter depends parametrically on the configuration {Ri} of
the large particles:

V11({Ri}) = U11({Ri}) + F2({Ri}) (6.3)

Up to now, no approximation has been made. If the large particles are fixed in
a given configuration, (6.3) provides the exact energy from which the direct-
configurational forces between the large particles can be derived. Once these
particles move under the action of these effective forces, friction forces due
to exchange of momentum with the bath of small particles will set in, and
hydrodynamic forces due to induced flow of the latter will come into play. This
difficult problem of hydrodynamic interactions [2] is not the subject of the
present paper, which is restricted to static equilibrium properties independent
of velocity-dependent forces.
Two key aspects of the effective interaction V11 must be underlined.

Firstly, due to the presence of a free energy, F2, V11 is obviously state-
dependent, and has an entropic contribution of the small particles (F2 =
U2 − T S2). Secondly, although the direct interaction U11 may be pair-wise
additive, this is no longer true of V11. The free energy F2({Ri}) generally has
many-body-contributions, so that V11 will be of the more general form (with
the change of notation N1 → N and V11 → VN ):

VN ({Ri}) = V (0)
N +

∑∑

i≤j

v2(Ri,Rj) +
∑∑∑

i≤j≤k

v3(Ri,Rj ,Rk) + . . . .

(6.4)
V

(0)
N is a state dependent but configuration-independent “volume” term,
which has no bearing on the local structure of the large particles, but through
its contribution to the thermodynamic properties, it can, in some cases,
strongly influence their phase behaviour [3].
Expression (6.3) for the effective interaction, or potential of mean force,

was derived in the canonical ensemble, where the total numbers of small and
large particles are fixed (closed system). In many practical situations the bi-
nary system is in osmotic equilibrium with a pure phase of the small particles
(e.g the solvent), and the appropriate ensemble for such an open system is
the semi-grand canonical ensemble where N1 and the chemical potential μ2
of the small particles (rather than N2) are fixed. The corresponding thermo-
dynamic potential is the semi-grand potential Ω2 = Ω2(T,N1, μ2;Ri), and
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the effective interaction energy of the large particles will then be:

V11(Ri) = U11(Ri) +Ω2({Ri}) (6.5)

which will again be state-dependent, a function of temperature, volume V
and μ2 (rather than ρ2 = N2/V ).
In summary, the initial two-component system, involving a large num-

ber of microscopic degrees of freedom, has been reduced to an effective one-
component system involving only the degrees of freedom of the mesoscopic
particles. The price to pay is that the effective interaction energy is state-
dependent and generally involves many-body terms. Approximations must
now be invoked to calculate the highly non-trivial F2 or Ω2 term, i.e. the
part of the interaction energy between the large particles induced by the
small particles. Three different strategies have so far been used in practical
implementations:

a) For any given configuration {Ri} of the large particles, the small particles
are subjected to the “external” potential U12({Ri}, {rj}), and hence form
an inhomogeneous fluid, characterized by a local density ρ(r; {Ri}). The
thermodynamic potentials F2 or Ω2 are functionals of ρ(r), and full use can
be made of the classical density functional theory (DFT) of non-uniform
fluids to obtain tractable forms of F2 or Ω2 [4]. Given a form of Ω2[ρ∗(r)],
where ρ∗(r) is a properly parametrized trial density, the equilibrium den-
sity follows from the variational principle:

δΩ2[ρ∗(r)]
δρ∗(r)

∣
∣
∣
∣
ρ∗=ρ

= 0 (6.6)

Substitution of the optimum ρ(r) into Ω2 yields the equilibrium grand
potential for any configuration {Ri}. The optimization (6.6) may be im-
plemented by steepest descent or conjugate gradient techniques, and the
resulting effective potential energy between large particles can then be used
directly in standard MC or MD simulations [5]. In the latter case, the forces
F i acting on the large particles may be directly calculated from a classical
version of the Hellmann-Feynman theorem:

F i = −∇i V11({Rj})

= −∇i U11({Rj} − 〈∇i U12({Rj}, {rl}〉{Rj} (6.7)

where the angular bracket denotes an equilibrium average over the degrees
of freedom of the small particles, for a fixed configuration {Ri} of the
large ones. If the interaction energy U12 between the two species is pairwise

additive (U12 =
N1∑

i=1

N2∑

j=1
u12(|ri −Rj |)), the force F i is directly expressible

in terms of the local density ρ(r):

F i = −∇i U11({Rj})−
∫

ρ(r)∇i u12(r −Ri) dr (6.8)
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The optimization can also be achieved “on the fly”, along lines directly in-
spired by the Car-Parrinello method for ion-electron systems [6]. Successive
minimization and large particle updating steps are replaced by a single dy-
namical evolution, which involves the physical motion of the large particles
and fictitious dynamics of the local density of small particles, parametrized
by a plane wave expansion [7].
b) The previous DFT optimization method calculates directly the total ef-
fective energy of interaction between the large particles, or the resulting
forces acting on each of these particles, without dividing VN up into pair,
triplet and higher order interactions, as written in (6.4). Another strategy
is to attempt to compute these various contributions separately. At very
low concentration of large particles, the effective pairwise interaction v2
is expected to be dominant. In order to map out v2 as a function of the
distance r between two large particles, one may use standard MC or MD
algorithms to simulate a bath of small particles in the field of two fixed
large particles. Equation (6.7) may then be used to calculate the mean
forces acting on the two mesoparticles (which are opposite if the latter are
identical) for each distance r = |R1 − R2|. The effective pair potential
v2(r) finally follows from an integration of the forces. This procedure must
be repeated for each distance r, but there are no time-scale or ergodicity
problems, since the two large particles are fixed. The same goal can be
achieved by appealing once more to DFT for the inhomogeneous fluid of
small particles, subjected to the force field of two fixed large particles. The
optimization may be carried out in r-space, using an adequate Eucledian
or non-Eucledian [8,9] grid on which the local density of small particles
is defined. For two identical large particles, the local density has obvi-
ous cylindrical symmetry, but under favourable conditions, a considerable
simplification occurs by fixing one of the large particles and considering
an infinitely dilute solution of large particles in a bath of small particles
around the fixed large particle. The density profile of the large particles in
the zero concentration limit is directly related to the effective pair potential
between two large particles in a bath of small particles [10], i.e.,

v2(r) = −kB T lim
ρ1→0

ln(
ρ1(r)

ρ1(r →∞) ) (6.9)

The advantage is that the two density profiles ρ1(r) and ρ2(r) are now
spherically symmetric, but the method requires the prior knowledge of
an accurate density functional for an asymmetric binary mixture. This
strategy may be generalized to the calculation of three-body and higher
order effective interactions, by considering the density profiles of large and
small particles around two or more fixed large particles [11]. Applications
of this strategy will be discussed in Sects. 6.5-6.8.
c) Although the effective interaction energy (6.3) or (6.5) is not, in general,
pairwise additive at finite concentrations of the large particles, it would be
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very convenient, for computational purposes, to reduce it, at least approx-
imately, to a pairwise additive form. Contrarily to the two-body potential
v2(r) discussed in the previous paragraph, which is only valid in the low
density limit of large particles, the effective pair potential corresponding to
finite concentrations is expected to be density-dependent, and will, in some
average sense, incorporate the contributions of higher order terms in (6.4).
Such effective density-dependent pair potentials can, in some cases, be de-
rived from approximate functionals or from inversion procedures, examples
of which will be described in Sect. 6.5.

6.3 Electric Double-Layers

Electric double-layers around mesoscopic colloidal particles of various shapes
(spheres, rods, platelets, ...) or around polyelectrolytes make the generally
dominant contribution to the effective interaction between highly-charged
particles, which will be referred to as polyions [12,13]. Most simulations are
based on a primitive model, whereby the discrete nature of the aqueous sol-
vent is neglected, and a macroscopic value of the dielectric permittivity ε
is assumed. At very low polyion concentration, strategy b) of the previous
section may be adopted to compute an effective pair interaction between two
polyions, which is screened by microscopic counterions of opposite sign, as
well as coions in the presence of added salt. The resulting effective pair poten-
tial turns out to be invariably repulsive, of the screened Coulomb form pre-
dicted a long time ago by Derjaguin, Landau, Verwey and Overbeek (DLVO)
[14] as long as the microions are monovalent. However if divalent counte-
rions are present, they are more strongly correlated, and this may lead to
a short-range attraction between equally-charged polyions, due to an over-
screening effect [15]. Although most of the work on effective pair interactions
has focussed so far on spherical polyions, some recent MC simulations have
investigated the case of parallel lamellar colloids [16], and this work has very
recently been extended to charged discs of various relative orientations [17].
The triplet interaction between spherical polyions has similarly been calcu-
lated by MD simulations of co and counterions in the field of three fixed
polyions [18], and turns out to be attractive under most circumstances. In
the opposite limit of high concentrations, each polyion is confined to a cage
of neighbouring polyions, so that many-body interactions are expected to be
important, and pairwise additivity of the effective interaction is expected to
break down. It is then reasonable to consider a Wigner-Seiz cell model, where
a cell of geometry adapted to the shape of the polyions (e.g. a spherical cell
for spherical polyions) contains one polyion at its centre, surrounded by co
and counterions, such that overall charge neutrality is ensured, and with ap-
propriate boundary conditions for the electric field on the surface of the cell.
A physically reasonable boundary condition is to impose that the normal
component of the electric field vanishes on the surface. The initial problem
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involving many polyions is thus approximately reduced to the much simpler
problem of a single polyion surrounded by its electric double-layer. Although
all information on correlations between polyions is lost, the cell model allows
a calculation of the thermodynamic properties of concentrated suspension,
from MC or MD simulations of the inhomogeneous fluid of microions con-
tained in the cell, as well as an estimate of the effective polyions charge,
taking into account the phenomenon of counterion “condensation” [19,20].
Such simulations provide stringent tests for approximate DFT calculations,
including Poisson-Boltzmann (PB) theory.
At moderate polyion concentrations, the two previous strategies break

down. Strategy a) of the previous section, based on the step by step or “on
the fly” optimization of an appropriate free energy functional of the mi-
croion density profiles, is the most appropriate [7]. The free energy functional
F2[ρ+(r), ρ−(r), {Ri}] of the co- and counterion densities is conveniently split
into ideal, Coulomb, external and correlation parts:

F2[ρ+, ρ−] = Fid[ρ+] + Fid[ρ−] + FCoul[ρc]

+Fext[ρ+] + Fext[ρ−] + Fcorr[ρ+, ρ−] (6.10)

where:

Fid[ρα] = kBT
∫

ρα(r) [ln(Λ3
α ρα(r))− 1] dr (6.11)

FCoul[ρα] =
e2

2

∫

dr

∫

dr′
ρc(r) ρc(r′)
|r − r′| (6.12)

Fext[ρα] =
∫

ϕext(r) ρα(r) dr

=
N1∑

i=1

∫

u1α(r −Ri) ρα(r) dr (6.13)

In (6.12), ρc(r) = z+ρ+(r) + z−ρ−(r) is the charge density of the microions
(of valences zα). The polyion-microion potentials u1α in (6.13) contain a hard
core repulsion and a long-range Coulomb attraction (counterions) or repul-
sion (coions). Rapid variations of the densities profiles ρα(r) near the surfaces
of the polyions, which would pose numerical problems in r-space (grid) or
k-space (large k Fourier components) may be avoided by the use of appro-
priate classical polyion-microion pseudopotentials [7]. The correlation term
Fcorr may be expressed within the local density approximation (LDA) [7].
If it is neglected, the functional (6.10) reduces to the mean-field Poisson-
Boltzmann (PB) form. Optimization based on the functional (6.10-6.13) has
been achieved with the “on the fly” MD strategy for spherical polyions with
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counterions only (no salt) [7], and in the presence of salt (i.e. with co and
counterions) [21]. The effective forces between colloids are reasonably well
represented by a pair-wise additive screened-Coulomb form provided the (ef-
fective) polyion charge and the screening length are treated as adjustable
parameters. Other applications include rigid rod-like polyions [22], and flexi-
ble polyelectrolytes [5], the latter being investigated by MC simulations cou-
pled with steepest descent optimization, to allow a more efficient exploration
of polyelectrolyte configuration space. If Fcorr is neglected in the functional
(6.10), and the ideal terms are replaced by their quadratic expansion in pow-
ers of Δρα(r) = ρα(r)−ρα (where ρα is the bulk concentration of microions),
the total functional is quadratic in the ρα(r), and the Euler-Lagrange equa-
tions resulting from the extremum conditions (6.6) can be solved analytically
[7]. The resulting total effective energy of the polyions is then strictly pair-
wise additive, and the effective pair potentials are of the linearly screened
DLVO form. The entire procedure is justified only for relatively weak mi-
croion inhomogeneities (i.e. |Δρα(r)|/ρα < 1), i.e. for low absolute polyion
valence |Zp|. If the polyion charge is distributed over a number ν of interac-
tion sites, each carrying a charge Zp e/ν, linear screening may be an adequate
approximation for each interaction site. The resulting “Yukawa site” model,
where all sites on neighbouring particles interact via a screened Coulomb
(or Yukawa) pair potential, has been used to simulate charged rods [22] or
charged discs representing clay particles [23].
An excellent literature survey of the recent simulation work on charged-

stabilized colloidal suspensions is provided by the review of M. Dijkstra [24].

6.4 Simulating the Polarization of Dielectric Media

The coarse-graining methods developed for poly-ionic systems may be ex-
tended to take into account the polarization of dielectric media. This is im-
portant when dealing with mesoscopic interfaces, or the solvation of highly
charged macromolecules of biological interest, like DNA or proteins, by water
[25]. Since a full molecular description of the solvent surrounding the macro-
molecules would be computationally prohibitive, water is generally treated
as a dielectric continuum which is polarized by the charge distribution on
the macromolecules. The key problem is to determine the spatially varying
polarization P (r) induced in the dielectric, for any configuration of the “ex-
ternal” charges carried by the macromolecules and counter- and coions and
to calculate the resulting electrostatic potential Ψ(r), due to the external and
induced polarization charges.
Electrostatic problems involving dielectric polarization can be solved vari-

ationally, as in the case of electric double-layers considered in the previous
section, by minimizing an appropriate functional F of the polarization density
P (r) [26] or of the polarization charge [27]

ρpol(r) = −∇ · P (r) =∇ · [χ(r)∇Ψ(r)] (6.14)
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where χ(r) is the local dielectric susceptibility. The non-linear nature of the
problem is immediately apparent from the self-consistency requirement which
links Ψ(r) to ρpol(r):

Ψ(r) = Ψ0(r)−
∫
ρpol(r′)
|r − r′|dr (6.15)

where Ψ0(r) is the “external” electrostatic potential, due to the charge distri-
bution on the macromolecules. The advantage of using P (r) as a variational
field is that an electrostatic free energy functional can be constructed in the
form [28,29]

Fel[P (r)] =
1
2

∫

Ψ0(r)ρ(r)dr

+
1
2

∫

|P (r)|2/χ(r)dr −
∫

Ψ0(r)∇ · P (r)dr

+
1
2

∫ ∫
(∇ · P (r))(∇′ · P (r′))

|r − r′| dr dr′ (6.16)

Minimization of (6.16) with respect to P (r), for a fixed macromolecular
configuration (and hence Ψ0(r)), leads back to the usual constitutive equa-
tions of electrostatics, and the value of Fel at the minimum coincides with
the standard expression for the electrostatic energy of a polarizable medium
in an external field. This functional has been used by Marchi et al. in MD
simulations of polypeptides, with an “on the fly” optimization strategy [26].
A functional of the polarization charge (6.14), rather than of the polar-

ization itself can be constructed, which upon minimization, leads back to
the standard relations of electrostatics [30]. At its minimum, this functional
reduces to minus the electrostatic energy, so that it cannot be used in an ob-
vious way in dynamical optimization algorithms, but working with ρpol(r),
rather than with P (r), has two advantages. First a scalar rather than a vec-
torial field is to be handled on a grid. But more importantly, if the interface
between dielectrics is sharp, so that the susceptibility is essentially a step
function, the polarization charge (6.14) reduces to a surface charge which
may be defined on a 2d (rather than full 3d) grid, resulting in considerable
computational savings. In MD or MC simulations of macromolecular charge
distributions near interfaces, the polarization charge is efficiently calculated
by a steepest descent algorithm on a step by step basis. The method has
been successfully tested for simple model systems [30], and is at present be-
ing applied to the simulation of ion channels through membranes, where the
channel protein and the embedding lipid bilayer are treated as a dielectric
continuum responding to the moving electric charges on the cations and on
the water molecules [31]. Note that the role of the macromolecule and of water
are inverted compared to the macromolecular hydration problem [27,26].
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6.5 Coarse-Graining Linear Polymer Solutions

A solution of linear polymers involves many different length scales ranging
from microscopic bond length over the persistence length and the radius of
gyration (coil size) to the mean-inter coil distance, see Fig. 6.1. Therefore,
the direct simulation of on or off-lattice models of polymer solutions or melts
are very computer-intensive [32], because even the simplest linear polymers
involve thousands of monomers. Even if the latter are grouped into Kuhn seg-
ments, corresponding to one persistence length, the system will involve a very
large number of linearly connected, interacting particles. If N is the number
of polymer coils, each made up ofM segments, the total number of degrees of
freedom is 3NM which is a factor ofM (� 1) larger than for simple fluids or
rigid colloidal particles, assuming that the organic or aqueous (for polyelec-
trolytes) solvent is replaced by a continuum. The question hence naturally
arises of how to coarse-grain the initial, fully microscopic model involving M
monomers or segments per chain. The situation is somewhat different from
the previously examined cases, involving large and small particles. The poly-
mer case is more “democratic” in that all monomers play identical roles, at
least in the scaling limitM →∞, where end effects become negligible. An old
idea, which goes back at least to Flory [33] is to derive an effective interaction
between the centres of mass (CM) of neighbouring polymer coils, by integrat-
ing over the individual monomer degrees of freedom of two or more coils, for
fixed relative positions of their CM’s. Consider first the case of two isolated
polymer coils with monomer coordinates {riα}M (i = 1, 2; 1 ≤ α ≤ M) and
CM’s:

Ri =
M∑

α=1

riα (6.17)

If U({riα}) is the total potential energy of interaction of all monomers, the
probability distribution of the CM’s is:

P (R1,R2) =
1
Q2M

∫

e−βU({riα})
∏

i=1,2

δ(Ri −
∑

α

riα)
∏

α

driα (6.18)

where Q2M is the corresponding configurational partition function (equal to
the 6M -dimensional integral in (6.18), without the δ-functions). By analogy
with (6.2), the effective pair interaction between the CM’s is then given by:

v2(R1R2) = −kBT ln[P (R1R2)] (6.19)

The effective potential will only depend on r = |R1 −R2|. v2(r) is expected
to be of the order of the radius of gyration Rg of the polymers, since for
r ≥ Rg, there will be little overlap between two coils. Swollen polymers
in good solvent (where Rg ∼ Mν , with ν � 0.6, the Flory exponent) are
highly fractal objects, i.e. the mean monomer density inside a coil ∼M1−3ν

goes to zero in the scaling limit. An immediate consequence is that v2(r) is
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a “soft” potential, and that v2(r = 0) is finite [34], i.e. the polymer coils
may be modelled as penetrable spheres. On and off-lattice simulations of
self-avoiding walk (SAW) polymers [35,36], as well as renormalization group
(RG) calculations for the continuous “thread” model [37], show that the pair
potential v2(r) is well approximated by a single Gaussian:

v2(r)
kBT

= ξ exp(−J(r/Rg)2) (6.20)

where J � 1; the simulations yield [36] for M →∞:

ξ � 1.80± 0.05 (6.21)

while the RG yields the following ε = 4− d expansion.

ξ = 0.94ε+ 0.62ε2 +O(ε3) (6.22)

These results are independent of molecular detail, so that the simplest lat-
tice models and most efficient MC sampling (e.g. the pivot algorithm) can be
used to determine the effective interactions. Note that for self-avoiding walk
(SAW) polymers (which involve only excluded volume interactions between
monomers), the effective interaction is purely entropic in nature as signalled
by the scaling with kBT .
When nearest-neighbour attractions between monomers are included to

allow for solvent conditions (strong attractions correspond to poor solvent),
the effective pair potential between the CM’s becomes less repulsive, and
develops an attractive part as Θ-conditions are approached [35,38]. If ε0 de-
notes the depth of the attraction, ergodicity problems become more and more
severe in the simulations when ε0 / kBT > 1, but can be overcome by using
Bennett’s overlapping distribution method [39,40]. Returning to the SAW
model, appropriate for good solvent conditions, the method for determining
the effective pair potential can be extended to effective three- and more-body
interactions, by simulating three or more polymers for various configurations
of their CM’s [41]. The main qualitative results are that more-than-two body
interactions alternate in sign (the three-body potential being mostly attrac-
tive), and that the absolute amplitudes of higher order interactions do appear
to decrease with increasing order in line with scaling theory [42].
However the strategy of adding higher order effective interactions in sim-

ulations of polymer solutions of finite concentration is computationally in-
efficient. A much more efficient strategy is to determine state-dependent ef-
fective pair interactions by a systematic inversion procedure [36]. The pair
distribution function g(r) of the CM’s of systems of SAW polymers at finite
concentration is calculated by direct simulations of a few hundred polymers
on a lattice, using efficient MC algorithms [40]. An effective concentration-
dependent effective pair potential between the CM’s is then determined by
Ornstein-Zernike (OZ) inversion, assuming some adequate closure relation,
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like the HNC closure [43]. In view of the softness of the resulting pair po-
tential, HNC theory becomes asymptotically exact in the high concentration
limit, and is extremely accurate at all concentrations [44,45]. The inversion
is a noniterative, one-step procedure, and it has been proven that there is
a one-to-one correspondence between any given g(r) and a v(r) (uniqueness
theorem [46]). The resulting effective pair potentials turn out to be weakly
dependent on concentration [36]. They may be used in large-scale simula-
tions of polymer solutions, of polymers at interfaces or of colloid-polymer
mixtures [47], to study, in particular, the effect of polymer interactions on
the depletion force between colloidal particles [36,48]. In its original formu-
lation, this coarse-graining strategy has one obvious drawback, namely that
simulations of the full monomeric representation of polymer solutions are ini-
tially required to determine the CM pair contribution function g(r), for each
polymer concentration, a rather formidable task, even if the resulting effec-
tive potentials may then be used to explore a range of different large-scale
phenomena. However even this drawback can be overcome by calculating the
monomer-monomer pair distribution function within the accurate PRISM
theory [49], and then extracting the CM pair distribution function from its
monomeric counterpart, together with the form factor (or internal structure
factor) of a single polymer coil, using a recently proposed, accurate relation
between these three correlation functions [50].

6.6 Star Polymers and Dendrimers

The ideas of coarse-graining, as applied to solutions of linear polymer chains
in the previous section, can be generalized to polymers with a more compli-
cated architecture. We shall discuss solutions of star polymers and dendrimers
in more detail. Star polymers [51] consist of f linear polymer chains which
are chemically anchored to a common centre (f is called functionality or arm
number). Obviously, linear polymers are a special case of star polymers when
f = 1, 2 depending whether the end or middle segment is taken as “centre”.
Dendrimers, on the other hand, can be viewed as iterated star polymers: pe-
riodically, any linear chain branches off into n additional chains (n is called
degree of branching) which is repeated g times (g is called generation num-
ber). For f > 3, in contrast to linear chains, star polymers and dendrimers
possess a natural centre which serves as an appropriate statistical degree of
freedom.
Let us first focus on star polymers in a good solvent. A full monomer-

resolved computer simulation is completely out of reach of present-day com-
puters: If N is the number of stars andM the number of monomers per chain,
a total number of NfM particles has to be simulated, f times more than for
a solution of linear chains and fM times more than for simple fluids. The
strategy b) of Sect. 6.2, however, can be efficiently used to make progress.
First consider only two stars at fixed separation r and average the force acting
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Fig. 6.1. Polymer solution on different length scales. (a): microscopic picture, water
and hydrocarbon chains are shown, the chemical bonds have a range of typically
1Å. (b): On a larger scale, the persistence length of the chains is relevant. (c): the
spatial extension σ of a single polymer coil. (d): all the coils are point particles
on this scale governed by the mean intercoil distance (e): size of the macroscopic
sample.

on their centres during an ordinary MC or MD simulation of the monomers.
Such a simulation involves 2fM particles only. A typical simulation snap-
shot is shown in Fig. 6.2. This is repeated for different r. By integrating the
distance-resolved data for the force, the effective interaction potential v(r)
is obtained. This interaction is repulsive, since the presence of another star
reduces the number of configurations available to the chains. For small arm
numbers f ≤ 10, the simulation results confirm an effective pair potential of
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r

Fig. 6.2. Typical configuration for two stars with f = 18 and M = 50 monomers
per chain as obtained from a snapshot during a Molecular Dynamics simulation
with r denoting the distance between their centres. By courtesy of A. Jusufi.

the log-Gauss form:

v(r) =
5
18
kBTf

3/2

{− ln( r
σ ) +

1
2τ2σ2 for r ≤ σ;

1
2τ2σ2 exp

(
−τ2 r2−σ2

σ2

)
for r > σ,

(6.23)

where σ is the corona diameter of a single star measuring the spatial extent of
the monomeric density. For large distances r, the interaction is Gaussian as
for linear chains. It then crosses over, at the corona diameter of the star, to a
logarithmic behaviour for overlapping coronae as predicted by scaling theory
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[52] which implies a very mild divergence as r → 0+. The matching at r = σ
is done such that the force −dv/dr is continuous. In (6.23) , τ(f) is known
from a fit to computer simulation results; for f = 2 we obtain τ = 1.03 in
line with the Gaussian potential (6.20) used for linear chains.
For larger arm numbers, f > 10, on the other hand, a geometric blob

picture of f cones around the star centre, each containing one linear chain
is justified [53]. The effective force for nearly touching coronae decays expo-
nentially with r, the associated decay length is the outermost blob-diameter
2σ/

√
f . This motivates a log-Yukawa form of v(r) [54]:

v(r) =
5
18
kBTf

3/2

{− ln( r
σ ) +

1
1+

√
f/2 for r ≤ σ

σ
1+

√
f/2

exp(−√
f(r−σ)/2σ)

r for r > σ
(6.24)

again matched at the corona diameter r = σ such that the force is continuous.
This potential was verified in monomer-resolved simulations [55] for a large
range of arm numbers.
Using scaling theory and monomer-resolved simulations of a triangular

configuration of three stars [42], triplet interactions were shown to be negli-
gibly small outside the corona and at most 11 percent of the pairwise forces
for penetrating triplets inside the corona; consequently the effective pair-wise
description for the many-body system is adequate provided the number den-
sity ρs of the stars is not much higher than the overlap density 1/σ3. Large
scale simulations involving many stars were performed using the pair poten-
tial of (6.24) [56,57]. Due the crossover of v(r) at r = σ from a harsh Yukawa
to a soft logarithmic behaviour, uncommon structural and thermodynamical
properties were obtained. First, the main peak of the liquid structure factor
changes non-monotonically with increasing density [57]. Secondly, the bulk
phase diagram exhibits [56] a reentrant melting behaviour for 34 < f < 44
and stable anisotropic crystal lattices. The latter finding has been supported
by experiments [58].
Next let us briefly discuss star polymers in a poor solvent. The only work in

this direction is close to the Θ-point where the chains are weakly interacting.
Consequently the resulting effective repulsion is weaker than in good solvent.
More quantitatively, an effective potential between two plates is available
within a self-consistent field approach for polymers grafted on flat plates
where the grafting density is high and the self-avoidance is weak [59]. This was
extended to spherical particles by employing the Derjaguin approximation
[60,61] providing an analytical expression for the effective pair potential v(r).
In the limit of small core sizes, this expression has been successfully tested
against scattering data for f = 64 arm stars in a solvent close to Θ conditions
[62]. What is still unexplored is a systematic approach for arbitrary solvent
quality which continously switches between good solvent quality to the Θ
point and beyond.
Much more stretched configurations are achieved for polyelectrolyte stars

(“porcupines”) due to the strong Coulomb repulsion of the charged monomers
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along the chains. If one brings two polyelectrolyte stars together they hardly
interdigitate but retract. A variational analysis [63] for the effective force,
which includes Coulomb interactions and entropies of the counterions, re-
veals that the entropy of the counterions which are inside the coronae of
the two polyelectrolyte stars dominates the interaction, confirming an old
idea of Pincus [64]. The analytical theory was quantitatively verified by com-
puter simulations with explicit monomers and counterions [63]. Inside the
corona, the resulting effective force could be fitted by an inverse-power law
∝ r−γ where the exponent γ slightly depends on the actual charging condi-
tions but is always around 0.7 − 0.8. By integration, an effective potential
is obtained which stays finite at the origin and behaves inside the corona
as v(r) = v(0) − Cr1−γ with a positive constant C. However, the actual
value v(0) for completely overlapping stars is much larger than kBT so that
significant overlap is rare. Due to the softness of the interaction, similar struc-
tural anomalies as obtained for star polymers are expected including a non-
monotonic variation of the first peak in the structure factor for increasing
density and reentrant melting.
Finally, dendrimers in a good solvent have been addressed. For a branch-

ing degree b = 2 and a generation number g = 4 an effective Gaussian poten-
tial can be derived theoretically [65], provided the centre-to-centre distance
r is larger than the corona diameter σ. In formal analogy to linear polymer
chains one obtains:

v(r) = B exp(−r2/σ2) (6.25)

The important difference from the case of linear polymer chains is that the
prefactor

B

kBT
=
M2v0
π3/2σ3 (6.26)

is much larger than 1, with M denoting the total number of monomers
per dendrimer and v0 the excluded volume parameter per monomer. The
Gaussian interaction (6.25) was confirmed quantitatively by scattering ex-
periments [65]. A detailed comparison for b = 2 dendrimers with higher
generation number g = 5 reveals that the effective potential v(r) is well de-
scribed by a sum of two Gaussians [66] comprising the effect of the stiff inner
region and the floppy outer region of a dendrimer. The effect of increasing
the degree of branching b is much less explored. In principle a Gaussian pair
potential (6.25) (or a superposition of them) is again expected but the pref-
actor B/kBT should grow with increasing b. Thereby it should be possible to
tune the prefactor B/kBT to larger values, where freezing is expected [67].
Coarse-graining star polymers and dendrimers thus maps them onto sim-

ple liquids with soft interactions (socalled mean-field fluids) which in turn
implies peculiar properties. Hence the concept of effective interactions not
only allows for efficient simulation, but also provides insight into the physical
behaviour.
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6.7 Colloids and Polymers: Depletion Interactions

If a sterically-stabilized colloidal particle is brought into a non-adsorbing
polymer solution, the latter are depleted in a zone around the colloidal sur-
faces due to the colloid-polymer repulsion. The width of this zone is of the
order of the radius of gyration dp/2 of the polymers. If one now brings two
colloidal particles close to each other, the two depletion zones overlap, which
brings about a free energy gain of the polymers relative to a situation of non-
overlapping zones, resulting in an effective attraction between the colloids,
the so-called depletion attraction. Alternatively one can view the attraction
arising from an unbalanced osmotic pressure exerted on the colloidal particles
by the surrounding polymers.
The simplest model for colloid-polymer mixtures including the depletion

effect is the so-called Asakura-Oosawa (AO) model [68] which assumes hard
core interactions between the colloids of diameter dc, further hard-core in-
teractions between the polymers and the colloids with a range (dc + dp)/2,
but no interaction at all between polymers. The ideality of the polymers is a
crucial approximation which is fulfilled only for dilute polymer solutions, but
it allows to investigate many of the statistical properties of the AO model
analytically. For instance, the effective interaction v(r) between a colloidal
pair can be calculated to be the product of the polymer osmotic pressure
Pp = kBTρp and the overlap volume of the two depletion zones consisting of
two spherical half-caps. Explicitly it reads

v(r)
kBT

=

⎧
⎪⎪⎨

⎪⎪⎩

∞ for r ≤ dc
ρp

π
6 (dc + dp)

3
[
1− 3r

2(dc+dp)+
1
2

r3

(dc+dp)3

]
for dc < r ≤ dc + dp

0 for r ≥ dc + dp
(6.27)

Furthermore, by a simple geometric consideration, it can be shown that ef-
fective triplet and higher-order many-body forces vanish provided the size
ratio between colloids and polymers q = dp/dc is smaller than 0.154. In this
case, the AO model is formally equivalent to an effective one-component sys-
tem with a short ranged attraction, which immediately opens the way for
large-scale simulations.
The phase diagram of the AO model was explored by computer simu-

lations on three different levels: first, one-component calculations using the
effective pair potential (6.27) have been performed [69], which are exact for
q < 0.154. Secondly, more recently, Dijkstra has simulated the full effective
Hamiltonian including effective many-body forces to arbitrary order for q = 1
[70]. Finally, brute force simulation with explicit ideal-gas polymers have been
carried out [71]. The emerging phase diagram involves three phases: gas (i.e.
colloidal poor), liquid (i.e. colloidal rich) and an fcc colloidal crystal. A liquid
phase is stable if the ratio q is larger than qc ≈ 0.5.
On the other hand, theoretical progress was made by constructing a free

volume theory for the fluid bulk free energies [72] which provides a reliable
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estimate for the gas-liquid transition. A free-energy density functional for
the AO colloid-polymer mixtures, valid for arbitrary inhomogeneous situa-
tions, was constructed [73] in the spirit of Rosenfeld’s fundamental measure
approach [74], which reproduces the effective interaction (6.27) for a colloid
pair and the free volume theory of Ref. [72]. This density functional was ap-
plied to wetting phenomena of planar walls. A novel type of wetting involving
growth of only few colloidal liquid layers on top of the wall as liquid-gas co-
existence is approached was predicted by density functional theory [75] and
confirmed by computer simulations [70,71]. This wetting scenario only shows
up for ratios larger than qc, so that one can speculate that it is produced by
the intrinsic many-body nature of the effective forces.
Obviously, the AO model has the short-coming of idealized interactions.

More realistic models involve a non-zero polymer-polymer interaction and a
softer polymer-wall interaction [76]. On the other hand, full two-component
simulations of colloids and polymers were performed [77,78] where the poly-
mers are defined on a lattice. Clearly these include any effective many-body
interactions. A second computationally less demanding technique is to cal-
culate effective pair interactions between a colloid and a polymer first by
a monomer-resolved reference simulation. This strategy was followed in the
more general context of mixtures of colloids and star polymers for small size
ratios q. Supported by theoretical scaling arguments the following pair in-
teraction between a hard-sphere colloid and a star polymer was obtained
[79,47]:

vcp(r) = kBTΛf3/2
(

dc

2r+dc

)
(6.28)

×
{
− ln(2r−dc

σ ) + ( (2r−dc)2

σ2 − 1)((1 + 4κ)/(1 + 2κ)) + ζ for r ≤ dc+σ
2 ;

ζ erfc(κ(2r − dc)/σ)/erfc(κ) else,

Here, Λ and κ are known parameters depending on the functionality f of
the star, ζ =

√
πerfc(κ) exp(κ2)/(κ(1 + 2κ2), σ denotes the corona diameter

of the star and erfc(x) is the complementary error function. For r → dc/2
the potential diverges logarithmically as for the star-star interaction (6.23).
Linear polymer chains are obtained as the special case f = 2 where Λ = 0.46
and κ = 0.58. The two-component system with effective pair interactions
was investigated in detail by further simulation and liquid integral equation
theory. For different arm numbers f , the fluid-fluid demixing transition was
calculated [79] in good agreement with experimental data. Furthermore, the
freezing transitions was discussed. Above a critical arm number of fc ≈ 10,
fluid-fluid demixing was preempted by freezing [80].
In case of polymer size comparable or larger than the colloidal diameter dc,

effective many-body forces play a significant role. Complementary methods
such as monomer-resolved liquid intergral equations methods combined with
the PRISM approach [81] or field-theoretic calculations [82] have provided
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valuable insight into the structure of colloid-polymer mixtures. The limit
of large q contains completely different physics, since the colloidal spheres
represent then small perturbations for the long polymer chains [78].

6.8 Binary Colloidal “Alloys”

Binary mixtures of large and small sterically-stabilized colloids exhibit many
unexpected phases. Such a binary colloidal “alloy” can be modelled as a two-
component hard sphere system involving two colloidal diameters d1 and d2
(d2 < d1). If the size ratio q = d2/d1 is larger than 0.4, a large variety of
stable phases involving different superlattice crystals are predicted by theory
[83] and simulation [84] and observed experimentally [85] . We shall focus
here more on the case of small q, where a depletion picture, similar to that
discussed for colloid and polymer mixtures, should hold. In contrast to the
AO-model, however, many-body forces are present for any q in the hard
sphere mixture, but these can be shown to be small with respect to the
pairwise contribution [9,11].
The effective depletion potential v(r) between a pair of big spheres in a

sea of small spheres has been efficiently calculated and analytically param-
eterized, based on the procedure of Roth et al. [10] as applied to the two-
component hard sphere density functional of Rosenfeld [74]. As a function of
r, v(r) involves a short-ranged attraction followed by an oscillatory behaviour
decaying exponentially with the bulk correlation length of the small spheres.
The density functional predictions were confirmed by computer simulations
[86,87] and by experiments [88].
One key question addressed during the last decade was whether the de-

pletion attraction is strong enough to drive fluid-fluid phase separation (for a
recent review see [24]). The problem was finally solved by computer simula-
tion using the effective one-component model with the depletion pair poten-
tial [89,90]: a fluid-fluid demixing is obtained for q < 0.1 but this is always
metastable with respect to the freezing transition into an fcc solid made up
by the big spheres. The simulations of the effective one-component model
were confirmed by full simulations of the true binary system [89] showing
once more that the influence of triplet forces is negligible [9,11]. Simulation
results for the phase diagram, as presented in terms of the packing fractions
η1 = πρ1d31/6 of the big particles and η

r
2 of a reservoir of small particles in

coexistence with the whole system, are shown in Fig. 6.3 for q = 0.2, 0.1, 0.05.
Besides the fluid-fluid demixing which remains metastable, an isostructural
solid-solid transition occurs at high η1 for q < 0.05, as familiar for one-
component systems with a short-ranged attraction [91,92]. As q decreases,
the fluid-solid coexistence line becomes more and more horizontal until the
sticky hard-sphere limit (q → 0+) is achieved where a vacuum coexists with a
close-packed crystal. This example shows again that the effective interaction
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Fig. 6.3. Phase diagram of binary hard-sphere mixtures with size ratios (a) q = 0.2,
(b) q = 0.1, and (c) q = 0.05 as a function of the large-sphere packing fraction η1

and the small-sphere reservoir packing fraction ηr
2 . F and S denote the stable fluid

and solid (fcc) phase. F + S, F + F , and S + S denote, respectively, the stable
fluid-solid, the metastable fluid-fluid, and the (meta)stable solid-solid coexistence
regions. The solid and dashed lines are the effective one-component results; the
squares and the asterisks (joined by lines to guide the eye) denote, respectively,
the fluid-solid and the solid-solid transition obtained from direct simulations of the
true binary mixtures. Reproduced from Ref. [89] with permission.
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picture allows qualitative and quantitative understanding of the topology of
phase diagrams.
Further current research is focused on the sensitivity of the depletion po-

tential to polydispersity of the small particles [93], and to small-small and big-
small interactions beyond the hard sphere model [94]. Polydispersity smears
out the oscillatory behaviour, while keeping the deep attraction near contact
unchanged. Different small-small and big-small interaction have a significant
impact on the effective big-big interaction: for instance, an attraction be-
tween the small particles or the big and small particles leads to repulsive ef-
fective interactions due to an accumulation of small particles on the surfaces
of the big ones. This “inverse depletion effect” may be called accumulation
repulsion. These recent findings imply that the effective interactions can be
systematically tuned via the basic interactions and polydispersity.

6.9 From Colloidal to Nanoscales

Although the concept of effective interactions as described in Sect. 6.2 is ex-
act in principle, there are limitations in applying it in practice. These limita-
tions become more and more important if one considers smaller and smaller
macroparticles, such that molecular details become more relevant. In fact,
on nanoscales, chemical specificity is starting to become crucial, resulting
in many different phenomena like solvation effects, hydration, hydrophilic-
ity, hydrophobicity, forces determined by chemical bonding etc. In fact, these
effects are essential to explain the structure and function of biological macro-
molecules in solution, e.g. of proteins. Under these circumstances, it is clear
that one cannot get away with relatively simple effective interactions, char-
acterized by few parameters, like those discussed previously in the context
of colloidal length scales. The immediate question arising is when and where
does the simple coarse-graining concept break down if one crosses over from
the colloidal to the nanoscale. Basically there are two major caveats: The first
concerns the choice of the microscopic degrees of freedom which are to be in-
tegrated out; the second concerns internal degrees of freedom and modelling
of the big particles themselves. In the sequel we shall discuss these two points
in detail and illustrate them using two examples.
Regarding the first point, even on nanoscales there remains an enormous

number of microscopic degrees of freedom. The relevant question is which of
these have to be included explicitly in the starting Hamiltonian or may be
ignored or replaced by effective parameters. This is a tricky question when
length scales are less clearly separated than in colloidal systems. For long
polymer chains, scaling theory implies that molecular details are unimpor-
tant for most purposes, such that one can get away with simple lattice models
(as discussed for linear polymer chains) or with a simple monomeric descrip-
tion of beads (as discussed for star polymers). For charged colloids, in the
primitive approach, the solvent molecules are not considered explicitly but



188 Jean-Pierre Hansen and Hartmut Löwen

only enter via the dielectric constant. The charged microions, on the other
hand, are included explicitly, since their Coulomb interaction is stronger than
the dipolar forces acting between the solvent. While this seems to be justified
for micron-sized colloidal particles with typical interparticle spacing of mi-
crons (provided molecular details on the colloidal surface are encaptured by
an effective colloidal charge), it is questionable when the colloidal diameter or
the intercolloidal distance is becoming comparable to the correlation lenth or
interaction range of the microcopic degrees of freedom, i.e. for nanoparticles.
As an illustration, we consider the effective interaction between two nano-

sized charged colloidal particles in a hard sphere solvent. A systematic com-
parison between primitive-model calculations where the solvent is neglected
and the full system including the hard sphere solvent was performed recently
by Allahyarov and one of us [95,87]. On an intermediate level, one can for-
mally integrate out the solvent, ending up with effective interactions between
the charged particles. If these are approximated to be pairwise, one obtains
the so-called solvent averaged primitive model [96]. In this model, the inter-
action between charged species comprises the bare Coulomb interaction and
the effective depletion interaction between hard spheres as discussed in Sect.
6.8. Extensive computer simulations [95,87] have shown that the total effec-
tive force between charged colloidal particles does depend on the presence of
the discrete solvent. Even the sign of the effective interaction can be different
in the primitive model as compared to the full solvent result. An example
for divalent counterions and a charge asymmetry of qp : qc = 64 : 2 is shown
in Fig. 6.4 where the ratio of the three hard-core diameters of colloidal par-
ticles, counterions and solvent particles is dp : dc : ds = 14 : 2 : 1. In fact,
interpreting the solvent size as a microscopic scale, the colloidal diameter
is 14 times larger and thus falls into the nano-regime. While the primitive
model reference calculations yield a repulsive effective force, the simulations
including a hard-sphere solvent result in an attractive force.
The solvent-averaged primitive model, on the other hand, reproduces the

data of the full solvent simulation rather well. The simulation time for the
solvent-averaged primitive model is similar to that of the primitive model,
since the number of particles simulated is the same, while the full simulation
requires the inclusion of many solvent particles. Hence the concept of effective
interactions as applied to the solvent degrees of freedom alone, makes simula-
tions feasible in the spirit of McMillan-Mayer theory. But even more impor-
tantly, the solvent-averaged model also provides insight into the basic physics:
the depletion attraction between a colloidal sphere and counterions favours
an accumulation of the latter on the colloidal surfaces, thus enhancing the
screening. It is this effect which, together with strong Coulomb correlations,
leads to the attraction evident in Fig. 6.4 which is completely missing in the
primitive model. For large colloidal spheres, on the other hand, it was shown
in Ref. [87] that the effect of a discrete hard sphere solvent can completely be
accounted for by taking a different (effective) colloidal charge as input in the
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Fig. 6.4. Reduced distance-resolved force F (r)dp/kBT versus reduced distance
r/dp between two charged colloids as obtained by computer simulations. The inset
shows the same for nearly touching polyions of molecular distances. The parameters
are: qc = 2, qp = −64, dp : dc : ds = 14 : 2 : 1, ε = 81, the volume fraction of the
polyions in the periodically repeated box is ηp = 5.8 × 10−3. Solid line with error
bars: full simulation including the hard sphere solvent; long-dashed line: solvent
averaged primitive model; short-dashed line: primitive model; dot-dashed line in
inset: solvent depletion force alone (for comparison).

primitive model calculations. Consequently simple coarse-graining is justified
provided an effective colloidal charge is used.
The second caveat for coarse-graining concerns the description of the big

colloidal particles. Up to now we have modelled them as homogeneously
charged hard spheres in the context of charged suspensions. Coming down
to nanoscales, the molecular details and internal degrees of freedom of the
large particles themselves, which are neglected in statistical descriptions of
colloidal dispersions, are becoming more and more relevant. We shall illus-
trate this using an example where the discreteness of the charge pattern on
the colloidal surfaces turns out to be crucial provided the particles are nano-
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sized. This is of particular importance for proteins which are characterized
by nanoscale electrostatic patches.
In a recent computer simulation [97], the effective interaction between

two nano-sized colloidal spheres (modelling globular proteins) with a discrete
charge pattern was calculated within the primitive model as a function of
added salt concentration. A snapshot of a protein pair is shown in Fig. 6.5.
Discrete elementary point charges were placed on the protein surface with a
finite depth. Consequently the effective interaction not only depends on the
centre-to-centre distance r but also on the relative orientations of the two
proteins. These represent additional statistical degrees of freedom associated
with the macroparticles. The data were compared to the standard description
with the charge uniformly smeared over the particle surface. A key quantity
controlling protein crystallization [98] is the second osmotic virial coefficient
B2 which can readily be measured by scattering methods in dilute protein
solutions. B2 can be shown [97] to be related to the effective interaction by

B2 =
1
2

∫

d3r[1− exp(−v(r)/kBT )] (6.29)

in formal analogy to the orientation-independent case of the smeared charged
model. Here v(r) is the integral of the canonical orientational average of the
distance-resolved effective force projected onto the separation vector between
the two proteins [97].
A detailed calculation of B2 as a function of added salt reveals that it be-

haves non-monotonically as a function of added salt concentration, in agree-
ment with several experimental studies [99]. This non-monotonicity, however,
disappears when the surface charge uniformly smeared out. It can thus be
traced back to strong Coulomb correlations induced by the discrete binding
centers near the surface. This example shows that important effects are lost
even qualitatively, when the coarse graining of nanoparticles is pushed too
far.

6.10 Conclusions

In summary, we have demonstrated that the concept of effective interactions
allows large-scale simulations and provides additional insight into the physical
mechanisms governing colloidal dispersions and polymer solutions. We con-
clude with a discussion about multiple time scales in the context of colloidal
dispersions.
The dynamics of colloidal particles embedded in a solvent involves many

different time scales ranging from the collision time τs ≈ 10−14sec of the
solvent molecules, over the relaxation time τB ≈ 10−9sec of the total colloid
momentum and the propagation time τH ≈ 10−9sec of hydrodynamic inter-
actions, to the Brownian time τ0 ≈ 10−6sec on which diffusive motion of the
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Fig. 6.5. Simulation snapshot of a microion configuration around two model pro-
teins separated by r = 1.7dp, dp denoting the protein hard core diameter. The
proteins carry 15 discrete charges e, monovalent salt molarity is cs = 0.206Mol/�.
The globular protein molecules are shown as two large grey spheres. The embedded
small dark spheres on their surface mimic the discrete protein charges. The small
grey spheres are counterions, while the black spheres are coions.

colloidal particles is observed. Consequently there is almost complete time
scale separation

τs << τB � τH << τ0. (6.30)

It is a challenging question whether - in analogy with bridging length
scale gaps - one can “integrate out” the fast dynamical processes which hap-
pen on the time scale τs in order to arrive at an “effective dynamics” on
larger time scales. The traditional approach is a stochastic one, as embodied
in Langevin and Fokker-Planck formulations [114,115], but a rigorous deriva-
tion of the Fokker-Planck equation from the initial full Liouville equation for
dilute colloidal suspensions exposes the intrinsic limitations of the Fokker-
Planck equation, due to the similarity of the time scales τB and τH [116].
Clearly a dynamical counterpart of the effective interaction concept gov-
erning the thermodynamics and statics is missing. From a simulation point
of view however, relying on an (almost) complete time scale separation be-
tween solvent and colloidal dynamics, one typically describes the motion of
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the colloidal particles by a completely overdamped Langevin equation with
stochastic forces exerted onto the colloids modelling the random solvent kicks
[100,101]. Within such a Brownian approach operating on a time scale τ0, the
hydrodynamic interactions act instantaneously. Much recent effort was spent
to treat these hydrodynamic interactions approximatively [102] by using dif-
ferent computational schemes such as lattice-Boltzmann techniques [103],
Stokesian Dynamics [104], dissipative particle dynamics [105], and fluidizing
the solid colloidal particles [106]. Although these algorithms are powerful in
different applications, it is fair to say that all of these approaches lack a
rigorous theoretical justification.
Having established a stochastic Brownian approach for the colloidal par-

ticles resulting from the solvent dynamics, a much more modest question
concerns the dynamical utility of the effective interaction concept originat-
ing from integrating out small particles different from the solvent (counter-
and salt ions, polymers, small colloidal particles etc). One may conjecture
that it is only in the case of a complete time scale separation between the
big and small particle dynamics that the effective interaction has a true dy-
namical meaning. This is the reason why the effective interaction potential
is frequently combined with Brownian dynamics simulations for the colloids.
For instance, the effective DLVO-potential has been combined with Brownian
dynamics simulations in order to investigate the glass transition [107], long-
time self-diffusion [108], linear shear flow [109,110,111], and phase transitions
in driven colloidal mixtures [112,113]. It would be very interesting to test and
study systematically how far one can get with the coarse-graining approach
as far as dynamical questions are concerned.
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Macromolecules 34, 2914 (2001).
66. C. N. Likos, private communication.
67. A. Lang, C. N. Likos, M. Watzlawek, H. Löwen, J. Phys. Condensed Matter
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97. E. Allahyarov, H. Löwen, A. A. Louis, J. P. Hansen, Discrete charge patterns,

Coulomb correlations and interactions in protein solutions, Europhys. Letters
(in press).

98. A. George, W. W. Wilson, Acta Cryst. D 50, 361 (1994); G. A. Vliegenthart,
H. N. W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000).

99. B. Guo, S. Kao, H. McDonald, A. Asanov, L. L. Combs, W. W. Wilson, J.
Cryst. Growth 196, 424 (1999); D. N. Petsev, B. R. Thomas, S. T. Yau, P.
G. Vekilov, Biophysical Journal 78, 2060 (2000).

100. For a review, see P. N. Pusey, in “Liquids, Freezing and the Glass Transition”,
edited by J. P. Hansen, D. Levesque and J. Zinn-Justin (North Holland, Am-
sterdam, 1991).

101. J. K. G. Dhont, “An Introduction to Dynamics of Colloids”, Elsevier, Ams-
terdam, 1996.
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108. H. Löwen, G. Szamel, J. Phys. Condensed Matter 5, 2295 (1993).
109. S. Butler, P. Harrowell, J. Chem. Phys. 103, 4653 (1995); J. Chem. Phys.

105, 605 (1996).



196 Jean-Pierre Hansen and Hartmut Löwen
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Abstract. The glass transition of supercooled fluids is a particular challenge for
computer simulation, because the (longest) relaxation times increase by about 15
decades upon approaching the transition temperature Tg. Brute-force molecular
dynamics simulations, as presented here for molten SiO2 and coarse-grained bead-
spring models of polymer chains, can yield very useful insight about the first few
decades of this slowing down. Hence this allows to access the temperature range
around Tc of the so-called mode coupling theory, whereas the dynamics around
the experimental glass transition is completely out of reach. While methods such as
“parallel tempering” improve the situation somewhat, a method that allows to span
a significant part of the region Tg ≤ T ≤ Tc is still lacking. Only for abstract models
such as the infinite range 10-state Potts glass with a few hundred spins this region
can be explored. However this model suffers from very strong finite size effects thus
making it difficult to extrapolate the results obtained for the finite system sizes to
the thermodynamic limit.

For the case of polymer melts, two different strategies to use lattice models
instead of continuum models are discussed: In the first approach, a mapping of an
atomistically realistic model of polyethylene to the bond fluctuation model with
suitable effective potentials and a temperature-dependent time rescaling factor is
attempted. In the second approach, devoted to a test of the entropy theory, moves
that are artificial but which lead to a faster relaxation (“slithering snake” algorithm)
are used, to get at least static properties at somewhat lower temperatures than
possible with a “realistic” dynamics. The merits and shortcomings of all these
approaches are discussed.

7.1 Introduction

The reason for the slowing down of the dynamics of supercooled liquids and
the resulting glass transition to an amorphous solid is one of the biggest
unsolved problems in the physics of condensed matter [1,2,3,4,5] and it is also
a particular challenge for computer simulation [6,7,8,9,10,11,12]. The present
introductory section intends to remind the reader on the main experimental
facts and some theoretical ideas about the glass transition, and will also
serve to make clear why in this problem there exists a gap of time-scales that
simulations need to bridge.

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 199–228, 2002.
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Fig. 7.1. a) Static collective structure factor of polybutadiene at temperatures
T = 4K, T = 16K, and T = 270K. Note that for this system the glass transition
temperature is Tg = 180K and the critical temperature of mode coupling theory [3]
is Tc = 220K. The scattering background is not subtracted here, thus the zero of
the ordinate axis is not known precisely, and the ordinate units are just measuring
absolute scattering intensities. From Arbe et al. [13]. b) Static collective structure
factor S(q) plotted versus wave-vector q, for a bead-spring model of flexible poly-
mer chains with chain length N = 10. Beads interact with the potential given in
Eqs. (7.11)-(7.13). and lengths are measured in units of σ, temperatures in units
of ε. Three temperatures T = 0.2, 0.46 and 0.52 are shown (note that Tg ≈ 0.41
and Tc ≈ 0.45 for this model). The vertical lines highlight characteristic inverse
length scales (related to the end-to-end distance Re and radius of gyration Rg of
the chains as well as the first maximum and minimum of S(q)). From Baschnagel
el at. [14].
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Fig. 7.2. Right figure: Schematic plot of the viscosity η(T ) of a fluid (note η(T ) ∝ τ)
vs. inverse temperature 1/T . The location of the melting temperature (Tm), the
critical temperature of mode coupling theory (Tc) [3], the glass transition temper-
ature (Tg) and the Vogel-Fulcher-Kauzmann temperature [1,15] (T0) are shown on
the abscissa. The glass transition temperature Tg is defined empirically requiring
[1] η(T = Tg) = 1013 Poise. Two complementary concepts to explain the glass
transition are indicated by the schematic plots on the left: The lower figure shows
the time correlation function Φq(t) for density fluctuations at wave-vector q which
according to idealized mode coupling theory shows at a temperature Tc a nonzero
“non-ergodicity parameter” fc [3]. For T somewhat larger than Tc, Φq(t) exhibits a
plateau and the “lifetime” τ of this plateau (as well as η) diverge as one approaches
Tc [3]. The upper figure shows the entropy difference ΔS(T ) = Sfluid −Scrystal, with
Sm ≡ ΔS(Tm). The linear extrapolation of ΔS for T < Tg defines the Kauzmann
temperature T0 via ΔS(T = T0) = 0 [15]. Adapted from Binder [16].

As is well known, it is already a problem to characterize the static struc-
ture of a glass: the structure of an amorphous material is not regular like a
crystalline solid, but shows only short range order similar to a liquid. How-
ever, the latter flows, while the amorphous solid is rigid! In fact, if one makes
a scattering experiment, it is hard to distinguish from the structure whether
one has a fluid above the glass transition temperature Tg or a solid below
Tg (Fig. 7.1) [13,14]. If one approaches Tg, the structural relaxation time τ
which is related to the viscosity η(T ), for instance - increases smoothly by up
to 15 decades, as shown schematically in Fig. 7.2, without any accompanying
significant structural change detectable by scattering experiments (Fig. 7.1).
This increase of η(T ) is often fitted to the Vogel-Fulcher relation [1]

η(T ) ∝ exp[EV F /(T − TV F )] , (7.1)



202 Kurt Binder et al.

where EV F is an effective activation barrier. From this functional form it is
clear that η(T ) is predicted to diverge at the Vogel-Fulcher temperature TV F ,
which is lower than Tg, of course, if one invokes the empirical definition of
Tg via η(T = Tg) = 1013 Poise [1]. However, it is questionable whether the
temperature dependence of η as given by (7.1) really holds.
Another very common relation often used to describe various relaxation

functions of glassforming fluids is the Kohlrausch-Williams-Watts function,
also called stretched exponential, [1],

ϕ(t) ∝ exp[−(t/τ)β ] . (7.2)

This relation involves an exponent β ≤ 1, whose precise physical significance
is somewhat obscure. Again it is unknown under which circumstances (if any)
(7.2) is exact, and in which it is just a convenient fitting formula to represent
data.
Often it is claimed that the glass transition is a purely kinetic phe-

nomenon, and if one would be able to wait long enough (which could mean
times like the age of the universe, however!) one could see that glass is not
really a solid but still a fluid that flows. However, this idea is not generally
accepted, since there are some indications that there may be an underlying
quasi-equilibrium phase transition between metastable phases, namely from
the supercooled metastable fluid to an (also metastable) ideal glass phase
(the stable phase for temperatures lower than the melting temperature Tm

is of course the crystal). Such an indication is Kauzmann’s entropy paradox
[15]: By studying the difference in entropy between liquid and crystal one
finds that near Tg the difference ΔS(T ) = Sfluid − Scrystal has decreased to
about 1/3 of its value Sm at the melting/crystallization temperature Tm. If
this trend is extrapolated (linearly in T ) to even lower temperatures, ΔS(T )
would become negative below the Kauzmann temperature T0 (which is usu-
ally quite close to the Vogel-Fulcher-temperature TV F ), see Fig. 7.2. It would
indeed be paradox if the entropy of the supercooled fluid (with its disordered
structure) were less than the entropy of the ordered solid! One possibility to
bypass the problem is to assume that this “entropy catastrophe” is avoided
by a phase transition at T0 (or at some temperature in between T0 and Tg).
In fact, for the glass transition of polymer melts Gibbs and Di Marzio [17]
proposed an approximate theory that shows such a vanishing of the entropy
at T0, and subsequently Adam and Gibbs [18] suggested arguments to show
that (7.1) holds with TV F = T0. However, although these concepts enjoy some
popularity, all these arguments are based on very crude and hardly justifiable
assumptions and approximations, and hence they are not accepted by many
researchers. For instance, the mode coupling theory of the glass transition
(MCT)[3] claims that there is indeed an underlying transition but this is not
a phase transition in the sense of thermodynamics but rather a “dynamical
transition” from an ergodic to a nonergodic behavior. This transition should
occur at a critical temperature Tc and can be seen in the form of the time
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dependence of the correlation function of density fluctuations or its Fourier
transform Φq(T ), see Fig. 7.2. Above Tc, this correlator decays to zero, but as
Tc is approached a plateau develops whose “lifetime” gets larger and larger
until it diverges, in the ideal case: the system gets “stuck”, the decay of
Φq(t) stops at the “nonergodicity parameter” fc, an order parameter for the
glass transition that appears discontinuously at Tc. The physical idea behind
this theory is the “cage picture”: the motion of any atom in a dense fluid
is constrained by its neighbors, which form a cage around it. At low enough
temperatures the escape out of the cage gets blocked. MCT predicts that
close to this dynamical transition τ and η(T ) show a power-law divergence
as one approaches Tc,

τ ∝ η(T ) ∝ (T − Tc)−γ . (7.3)

In reality this dependence is, however, observed only in a limited tempera-
ture interval. The way out of this dilemma is the argument that one must
not neglect (as “idealized” mode coupling theory does [3]) thermally acti-
vated processes, so-called “hopping processes”, by which atoms supposedly
can escape from their cage when T is less than Tc. The theory then claims
[19] that a simple Arrhenius behavior results in this region, log τ ∝ 1/T for
T < Tc, and in the vicinity of Tc the power-law divergence of (7.3) is rounded
off to a smooth crossover from the power law to the Arrhenius divergence.
Thus this theory does not involve any phase transition, there is just a smooth
crossover from one type of dynamical behavior to another one near Tc, and
Tg means that relaxation times have grown so large that the system falls out
of equilibrium.
In real systems this crossover seems to occur at a viscosity somewhere

between 10 and 103 Poise, i.e. a time window that can be explored with
molecular dynamics (MD) simulations. Hence such simulations are able to
investigate the beginning of the approach to the critical temperature Tc which
MCT describes [3] and hence are very useful to check the validity of this
theory. However, the following 10 decades of the viscosity between Tc and Tg

are out of reach for MD simulations so far. Unfortunately this is precisely
the region that one needs to explore, for a definite distinction between the
theories!
Thus although straightforward atomistic MD methods [20,21] clearly face

a dilemma, we shall nevertheless describe how far one can push this type of
approach, choosing SiO2 as an example (Sect. 7.2). A method to extend the
range of times and accessible temperatures somewhat is the concept of “par-
allel tempering” [22,23,24,25,26], and this approach and its problems will be
presented in Sect. 7.3. For the sake of contrast, Sect. 7.4 will then describe
the 10-state Potts glass model. Although this model is only an abstract car-
icature for a real glass, it has the merit that quite a few results are known
analytically and that Monte Carlo simulations are possible at Tc and even
at lower temperatures, if one considers only systems of a few hundred Potts
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spins. The disappointing aspect is, Sect. 7.4, that even in this very ideal-
ized case one learns relatively little about the glass transition of the infinite
system, since one has to fight against dramatic finite size effects [27,28,29,30]!
Then we shall describe briefly (Sect. 7.5) a coarse-grained model of short

polymer chains [14,31,32,33,34,35,36,37]. This beadspring model is quite suc-
cessful in reproducing a number of experimental results qualitatively, as al-
ready exemplified in Fig. 7.1. The cooling rates that one can reach are about
3 orders of magnitude smaller than for SiO2. Thus the model is very useful
for testing mode coupling theory [36,37]. However, also for this system there
is actually only a dim hope that one can get distinctly below the critical
temperature Tc! With respect to that it may be better to work with the so-
called bond fluctuation model on the lattice [6,38,39,40,41,42,43,44,45,46,47]
- a system which allows to equilibrate melts at low temperatures with artifi-
cial moves [44,45,46,47]. By simulations of this model also the configurational
entropy and its temperature dependence can be extracted [44,45] and thus it
can be shown that the entropy theory of Gibbs and Di Marzio [17] is rather
inaccurate and misleading (Sect. 7.6). Finally, an interesting variant (Sect.
7.7) of the bond fluctuation model will be considered. Here one uses effective
potentials that are constructed such that a real material is mimicked, e.g.
polyethylene [48]. This trick allows that part of the problem of bridging the
time scales is taken care of by a “time rescaling factor” [48], a special trans-
lation factor between the physical time and the Monte Carlo time. Sect. 7.8
then will summarize some of the conclusions emerging from all this work.

7.2 Towards the Simulation of Real Glassy Materials:
The Case of SiO2

Molten SiO2 is a prototype of a network glassformer. Furthermore it is a
system that is well suited for molecular dynamics simulations since a very
well-tested pair potential based on quantum-chemical calculation has been
developed [49]. By a suitable combination of long-range Coulomb interactions
and short range forces, chosen in the form

Vij(r) =
qiqje

2

r
+Aij exp(−Bijr)− Cij/r

6 with i, j ∈ {Si,O}, (7.4)

the effective interaction between the ions can be described reliably. Here e
is the charge of an electron, qO = −1.2, qSi = 2.4, and the values of the
parameters Aij , Bij and Cij can be found in Ref. [49]. This potential is able
to describe the formation of covalent bonds without the explicit assumption
of three-body forces, whose calculation would be very time consuming. Due to
the long range of the electrostatic interactions, Ewald summation techniques
have to be used, while the short range part of the potential can be cut off at
a suitable radius rc. It turns out that rc = 5.5Å yields good results [50]. The
MD time step, however, must be chosen relatively small, namely δt = 1.6fs.
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Note that the presence of the long range Coulombic interactions make the
calculation of the forces still a quite CPU-intensive task. Furthermore one
has to average the results over several independent runs in order to improve
the statistics.
In a first set of simulations, the method used to cool the sample was

very similar to the procedure used in glass factories where the temperature is
reduced linearly with time t, starting from some initial temperature Ti such
that T (t) = Ti − γt, where γ is the cooling rate [50]. The main difference
between the simulation and the cooling of the real material are the actual
numbers used here: The initial temperature that had to be chosen in the
simulation was very high, Ti = 7000K, and cooling rates were between γ =
1015K/s and γ = 1012K/s [50]. In contrast the glass factory uses typical
initial temperatures of 1600K and cooling rates of 1K/s or even less, so the
simulation is at least 12 orders of magnitude off! Despite these extremely
high cooling rates - which are inevitable due to the heavy computational
burden - the generated structures are qualitatively reasonable. In particular
one obtains random tetrahedral networks in which almost all Si atom sit in
the center of a tetrahedron and most of the O atoms sit at the corners.
Earlier investigators (for a review see [7,8,50]) were so bold to claim that

such glass structures are identical to those occurring in nature, denying any
significant dependence on cooling rate. However, as we have shown [50], such
a claim is foolish since one sees a pronounced dependence on cooling rate
in many quantities, including the structure. As a typical example we show
in Fig. 7.3 how the distribution of the length n of rings depends on γ[50].
(See the figure caption for a definition of this length.) It is seen that over the
range of γ that is accessible there is a significant increase of P (n = 6) and a
significant decrease of P (n = 3) and P (n = 4), while P (n = 5), P (n = 7) and
P (n = 8) almost stay constant. Clearly an extrapolation of such data to the
physically relevant cooling rate γ = 1K/s is very difficult, and perhaps not
yet possible: Perhaps P (n = 3) and P (n = 4) are already practically equal to
zero for γ = 1K/s - we don’t really know. Even simple quantities, such as the
density of the glass at low temperatures, are hard to predict reliably. (This
problem is also complicated by the fact that molten SiO2 has at relatively
high temperatures a density anomaly where the thermal expansion coefficient
changes sign.)
A particular dramatic failure with extrapolations to lower values of γ was

encountered in an attempt to determine the cooling rate dependence of the
glass transition temperature Tg(γ). As is done in many experimental studies,
one can fit a smooth function of temperature to the liquid branch of the
enthalpy (where the melt has not yet fallen out of equilibrium) and another
smooth function to the glass branch of the enthalpy, and estimate Tg(γ) from
the temperature where these two branches intersect. Fig. 7.4 shows a plot
of Tg(γ) versus γ - note the logarithmic scale for γ! - for the simulation of
SiO2. One sees, first of all, that there is a very strong dependence of Tg(γ)
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Fig. 7.3. Cooling rate dependence of the probability P (n) that in the network
structure of SiO2 a ring of size n is present. A ring is defined as the shortest
connection of consecutive Si–O elements that form a closed loop and n is the number
of these segments. In this simulation we used 668 oxygen and 334 Si-atoms, and
cooled the sample at constant pressure p = 0 in an NpT simulation, cooling from
the initial temperature Ti = 7000K to the final temperature T = 0 K. An average
over 10 independent runs was performed, allowing to estimate the statistical errors
given in the figure. From Vollmayr et al. [50].

on γ, with Tg(γ) ≈ 4000K for γ = 1015K/s, while Tg(γ) has decreased down
to about Tg(γ) ≈ 2900K for γ = 1013K/s. In this range of cooling rates,
the dependence of Tg(γ) is not linear in log(γ). Nonlinear variations of Tg(γ)
that are qualitatively similar to those of Fig. 7.4 have been reported in the
experimental literature, too [51], and are typically described by

Tg(γ) = TV F −B/[log(γA)] (7.5)

This dependence can be justified by assuming that the fluid falls out of its
(metastable) equilibrium when the time constant of the cooling, γ−1, equals
the structural relaxation time τ(T ) at T = Tg(γ), and by using the Vogel-
Fulcher law from (7.1) for τ(T ), τ(T ) = A exp[B/(T − TV F )]. Obviously,
(7.5) does provide a very good fit to the data of the SiO2 simulation, but the
resulting TV F = 2525K is rather unreasonable: Remember that the experi-
mental glass transition temperature is Tg ≈ 1450K, the melting temperature
of crystalline SiO2 is around 2000K, and TV F should be significantly lower
than Tm and even somewhat below Tg, cf. Fig. 7.2. We emphasize here that
the failure of the simulation to predict Tg(γ = 1K/s) is not primarily due to
the inaccuracy of the pair potential since, as will be explained in detail be-
low, a different analysis of SiO2 simulation data yields much more reasonable
results. The failure implied by Fig. 7.4 simply comes from the fact that the
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γ, for molecular dynamics simulations of SiO2 using the BKS potential [49] and
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scribed in the text. All data are based on averages over 10 statistically independent
runs. The curve is a fit to the function given in (7.5) of the text, resulting in
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10-1000 picosecond timescale that is basically probed here is too many orders
of magnitude off from the time scale relevant for the glass transition and that
therefore an extrapolation of the results becomes a insecure undertaking.
A better way to study amorphous silica is to fix density at a reasonable

value, for instance the experimental value, and equilibrate the system at a
temperature which is as low as possible. Present day simulations can prop-
agate a system of around 8000 ions over a time span of around 20ns which
allows for a full equilibration at T = 2750K [52]. Longer time are accessible
for smaller systems. However, it was found that if one has fewer than O(103)
ions the results are plagued with finite size effects [53]. Simulating a large
system over this time scale are on the forefront of what is feasible today,
and require the use of multi-processor super computers such as CRAY-T3E,
making use of a parallelization of the force calculation [52,53,54].
This well-equilibrated melt can then be used as a starting condition for

a cooling run at constant density. The advantage of this procedure is that a
state at T = 2750K at the correct density is much closer in local structure
to the real glass, than the structures generated by the procedures described
above, and hence the spurious effects of the by far too rapid quench are much
less pronounced. This conclusion is corroborated by a comparison of the sim-
ulated structure factor with experiment [55], see Fig. 7.5. Given the fact that
the comparison in Fig. 7.5 does not involve any adjustable parameter whatso-
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ever, the agreement between simulation and experiment is quite remarkable,
and this reiterates our above conclusion that the potential used {Eq. (7.4)}
is accurate enough, and should not be blamed for discrepancies as discussed
in connection with Fig. 7.4.
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Fig. 7.5. Static neutron structure factor of SiO2 at room temperature (T = 300K)
plotted versus wave-vector q. The full curve is the molecular dynamics simulation
of Ref. [52], using the experimental neutron scattering lengths for Si and O atoms,
while the symbols are the neutron scattering data of Ref. [55]. From Horbach and
Kob [52].

For the temperatures at which one can equilibrate the system, i.e. here
2750K and higher, it is also possible to determine the self-diffusion constants
of Si and O atoms from the simulation. This is done by calculating the mean
square displacements 〈|ri(t)− ri(0)|2〉 = Δr2α(t) of the particles of type α ∈
{Si,O}, and apply the Einstein relation Δα(t) = 6Dαt in the regime of late
times where the dependence of Δα(t) on t is in fact linear [52,53,54]}. The
result is shown in Fig. 7.6, where also the respective experimental data [56,57]
are included. As one can see from Fig. 7.6, one needs to cover 16 decades, from
10−4cm2/s to 10−20cm2/s, to cover the full range including simulation results
and experiments, but the simulation results alone are actually restricted to
the first four decades of this range only. The straight lines fitted on this
Arrhenius plot to the experiment as well as to the simulation show that in
this case a bold extrapolation actually is rather successful - but of course
there is no guarantee that this will work similarly well in other cases.
A very interesting aspect of the temperature dependence of the diffusion

constants is that there are strong deviations from Arrhenius behavior at very
high temperatures. It turns out that this region is rather well described by a
power law, D ∝ (T −Tc)γ , as it is implied by mode coupling theory, see (7.3)
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g = 1381K or the Si

diffusion constant, respectively {DSi(T = T sim
g ) = 5 · 10−19cm2/s ⇒ T sim

g = 1303K.
From Horbach and Kob [52].

with D ∝ τ−1. In fact, this conclusion is strongly corroborated by a detailed
analysis of the intermediate scattering function φq(t) for wave-vector q and
various other quantities [52]. This finding is somewhat surprising, however,
since Tc ≈ 3330K [52], i.e. far above the melting temperature of crystalline
SiO2! Thus it is no surprise that experimental results had not given hint that
mode coupling theory also describes a “strong” glassformer such as SiO2
(where τ and η(T ) follow a simple Arrhenius behavior over a wide range of
temperature). Nevertheless, this discovery that a critical temperature exists
also for SiO2 is of great interest, because it suggests that the differences of the
relaxation dynamics between different glassforming fluids are of a quantitative
nature only, while qualitatively the behavior is always the same.

7.3 Parallel Tempering

One of the major reasons for the slowing down of the dynamics of (atomistic)
glass forming systems is that at low temperatures each atom is trapped in a
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cage formed by its surrounding neighbors. On the other hand the atom itself is
part of a cage that trap the neighboring atoms. With decreasing temperature
each of these cages becomes stiffer and stiffer and finally each atom can
perform only a rattling motion, i.e. the system has become a fluid that doesn’t
flow anymore, i.e. a glass. The basic idea of the parallel tempering method
is to help the particles to escape their local cage by supplying them with
sufficient kinetic energy to overcome the local barrier. Originally proposed
for spin models [22,23], the method has been found to be also useful for off-
lattice systems. A recent review on the method can be found in Refs. [24,25].
In the following we discuss briefly how the method is implemented in practice.
If we denote the Hamiltonian of the system as H = K(p)+E(q), whereK

and E are the kinetic and potential energy, respectively, and p = (p1, p2, . . . ,
pN ) and q = (q1, q2, . . . , qN ) are the momenta and coordinates of the parti-
cles, we construct a new Hamiltonian H as follows:
Make M independent copies of the Hamiltonian H: Hi = K(pi) +E(qi).

Here the pi and qi are the momenta and coordinates belonging to the i−th
subsystem. H is then defined as

H(p1, . . . ,pM ,q1, . . .qM ) =
M∑

i=1

Hi(pi,qi) =
M∑

i=1

K(pi) + ΛiE(qi). (7.6)

The 1 = Λ1 > Λ2 > . . . ΛM are constants which we will use later. We now
make a molecular dynamics simulation of the Hamiltonian H at a constant
temperature T = β−1

0 . After a certain time interval ΔtPT we attempt to
exchange the two configurations m and n belonging to two neighboring sys-
tems (i.e. m = n ± 1). Whether or not the swap of these two configurations
is accepted depends on a Metropolis criterion with a acceptance probability

wm,n =
{
1, Δm,n ≤ 0
exp(−Δm,n), Δm,n > 0,

(7.7)

where Δm,n = β0(Λn − Λm)(E(qm) − E(qn)). Since the normal molecular
dynamics simulation as well as the Monte Carlo procedure on time scale
ΔtPT fulfill the condition of detailed balance, the whole algorithm does so
also, i.e. after a sufficiently long time the system composed by the subsystem
will converge to a Boltzmann distribution. Note that in the systems with a
small value of Λ the interaction between the particles is weakened (see (7.6)).
Therefore it can be expected that the particles in these systems move faster
than those in systems with a large value of Λ. Another way to see this is to say
that each system is simulated at a different temperature and that periodically
the temperature of the system is increased or decreased (hence the name of
the algorithm). This walk in temperature space should thus allow the system
to overcome the local barriers formed by the above mentioned cages and thus
to propagate faster in configuration space.
Note that this algorithm has a substantial number of parameters, all of

which influence its efficiency considerably. In order that the acceptance prob-
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abilities of (7.7) are reasonably high, the coupling constants Λi should not be
too different. On the other hand one wants that ΛM is as small as possible
since this will lead to a fast propagation of the system at this temperature.
Therefore one is forced to choose a relatively large value ofM . This in turn is,
however, not good for the overall performance of the algorithm since in order
to be ergodic each configuration has to make a random walk in Λ−space, and
the time to do this increases like M2. Last not least there is the exchange
time ΔtPT which should not be too small since then the system just swaps
back and forth configurations that are very similar. On the other hand ΔtPT
should also not be too large, since one needs these type of moves in order
to explore the Λ−space quickly. The optimal choice of these parameters is
currently not known and still the focus of research [58]. A further problem is
to find out after which time the system H has really equilibrated. It seems
that to guarantee this it is not sufficient that every subsystem has visited
every point in Λ−space [58,59]. A good random walk should look like the one
shown in Fig. 7.7. Furthermore we point out that it might be possible that
a suboptimal choice of these parameters might make the whole algorithm
rather inefficient [59].

0 2000 4000 60002750K

3922K

t [ps]

p=1

p=32

SiO2

Fig. 7.7. Time dependence of the coupling constant for a parallel tempering simula-
tion of liquid SiO2. The number of particles was 336 and the number of subsystems
was 32. Note that the shown subsystem visits all the different coupling constants
several times, thus giving evidence that the overall system has indeed reached equi-
librium. From Kob et al. [26].

If the above mentioned parameters of the algorithm are chosen well, the
parallel tempering method can indeed speed up the equilibration of the sys-
tem considerably. This is demonstrated in Fig. 7.8 where we show the mean
squared displacement of the silicon atoms in SiO2 as a function of time. From
the figure we see that at the lowest temperatures the mean square displace-
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ment increases by about a factor of 100 faster than the corresponding curve
obtained from the conventional molecular dynamics simulation. From the fig-
ure it becomes also clear that the parallel tempering slows down the dynamics
of the system at high temperatures. This is due to the fact that these systems
are coupled to the ones at the low temperatures and hence cannot propagate
as fast anymore.
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Fig. 7.8. Time dependence of the mean squared displacement of Si in SiO2 at
different temperatures. The dashed lines are from parallel tempering runs and cor-
respond to temperatures 3922K, 3585K, 3235K, 3019K, and 2750K (top to bottom).
The solid lines are from conventional molecular dynamics runs and correspond to
temperatures 6100K, 4700K, 4000K, 3580K, 3250K, and 3000K (top to bottom).
From Kob et al. [26].

Before we conclude this section we mention that the parallel tempering
algorithm has been found to be also very efficient for the equilibration of
the Potts glass discussed in the next section. Thus, although the algorithm
might have some problems for certain systems or values of parameters, there
are models where it seems to work very well.

7.4 An Abstract Model for Static and Dynamic Glass
Transitions: The 10-State Mean Field Potts Glass

In this section we are concerned with a model for which it is known exactly
that there is a dynamical (ergodic to nonergodic) transition at a temperature
TD and a second, static, transition at a lower temperature T0 < TD, where
a static glass order parameter q appears discontinuously: the infinite range
p-state Potts glass with p > 4 [60,61,62,63,64,65,66]. In this model, one has
Potts “spin” variables σi which can take one out of p discrete values which
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we simply label from 1 to p, σi ∈ {1, 2, . . . , p}, where i labels the “sites”,
i = 1, 2, . . . , N . An energy pJij is gained if two spins σi, σj are in the same
state,

H = −
∑

i<j

Jij(pδσiσj − 1) . (7.8)

Every spin interacts with every other spin via an interaction Jij which is
Gaussian distributed, i.e.

P (Jij) =
[√
2π(ΔJ)

]−1
exp{−(Jij − J0)2/[2(ΔJ)2]} . (7.9)

Here the mean J0 and the width ΔJ are normalized such that

J0 ≡ [Jij ]av = J̃0/(N−1), (ΔJ)2 ≡ [J2
ij ]av−[Jij ]2av = ΔJ̃/(N−1) , (7.10)

a choice that ensures a sensible thermodynamic limit. We fix the temperature
scale by choosing ΔJ̃ ≡ 1, and set the mean of the distribution “antiferro-
magnetic”, J̃ = 3− p, in order to avoid any tendency towards ferromagnetic
order. (Note that for p = 2 this model would reduce to the standard Ising
mean field spin glass (Sherrington-Kirkpatrick model) [67], but we shall be
concerned with p = 10 here.) This model, which due to the choice (7.9)
exhibits quenched random disorder already in the high temperature phase
above the glass transition, can be solved exactly in the thermodynamic limit
[60,61,62,63,64,65,66]. One finds (Fig. 7.9) that slightly above TD the dy-
namic auto-correlation function of the spins exhibits a two-step decay, in
that a plateau develops whose life-time diverges at TD. It is important to
note that this behavior is described exactly by mode coupling equations of
the same type as they occur for the structural glass transition [3]! This shows
that this rather abstract model might be more similar to a real structural
glass than one would expect at a first glance. At a lower temperature T0,
a static glass transition occurs [60,61,62,63,64,65,66], where a static order
parameter appears discontinuously. Interestingly the static response function
does not diverge at T0, i.e. the glass susceptibility is still finite here. The
entropy does not have a jump at T0, but shows only a kink. Thus there is
no latent heat associated with this transition! A Kauzmann temperature TK ,
where the (extrapolated) entropy of the high temperature phase would van-
ish, also exists, but in this case clearly TK < T0 and TK does not have a
physical meaning.
It is of course interesting to know if computer simulations can identify

the static and dynamic glass transition in a model for which one knows from
the exact solutions [60,61,62,63,64,65,66] that all these glass transitions do
indeed exist. Surprisingly, the answer to this question is “no” since very
strong finite size effects are present. In particular it is even hard to see that
the above mentioned plateau in the autocorrelation function develops as one
approaches the temperature TD of the dynamical transition (Fig. 7.10) [28].
This is demonstrated in Fig. 7.10 where we show the autocorrelation function
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Fig. 7.9. Mean-field predictions for the p-state Potts glass with p > 4. The spin
glass order parameter, qEA, is nonzero only for T < T0 and jumps to zero discon-
tinuously at T = T0. The spin glass susceptibility χSG follows a Curie-Weiss-type
relation with an apparent divergence at TS < T0. The relaxation time τ diverges
already at the dynamical transition temperature TD. This divergence is due to
the occurrence of a long-lived plateau of height qEA in the time-dependent spin
autocorrelation function C(t). The discontinuous transition of the order param-
eter, however, is not accompanied by a latent heat. Therefore, there is no jump
in the entropy at T0, but only a kink occurs. The extrapolation of the high-
temperature branch of the entropy would vanish at a “Kauzmann temperature”
TK = [(1/4)(p − 1)/ ln p]1/2TS ≈ 0.988TS. From Brangian et al. [30].

of the Potts spins as a function of Monte Carlo time, for 160 ≤ N ≤ 1280.
Note that this range is of the same order of magnitude as the particle numbers
used for simulations of the structural glass transition, using models such as
the binary Lennard-Jones fluid [12] or similar models. No evidence for strong
finite size effects was ever found for the latter models if N was larger than
≈ 1000 [68]. Thus, a priori it is not at all obvious that system sizes of the
order 103 are completely insufficient to characterize the dynamics of a system
in the thermodynamic limit. However, from Fig. 7.10 we must conclude that
for the present system this is indeed the case, at least for temperatures close
to the dynamical transition temperature TD. This is in contrast with the
behavior at a high temperature, e.g. T = 1.8. From the figure we recognize
that at this temperature there are hardly any finite size effects and that
the data have nicely converged to the thermodynamic limit even for modest
system sizes.
Brangian et al. [27,28,29,30] defined a relaxation time τ from the time t

that it takes the autocorrelation function to decay to the value C(t = τ) = 0.2
(broken straight line in Fig. 7.10). This time is plotted logarithmically versus
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Fig. 7.10. Time dependence of the autocorrelation function C(t) of the spins in
the 10-state mean field Potts glass. C(t) is normalized such that C(t = 0) = 1
and C(t → ∞) = 0 for T > TD. Time is measured in units of Monte Carlo steps
per spin [MCS]. Two temperatures are shown, T = 1.8 and T = TD = 1.142 [66],
for several values of N . The solid horizontal line indicates the theoretical value
of the Edwards-Anderson order parameter qEA(TD) ≡ C(t → ∞) at T → T −

D

for N → ∞[66]. The horizontal dashed line shows the value used to define the
relaxation time τ , C(t ≡ τ) = 0.2. From Brangian et al. [28].

1/T in Fig. 7.11, so an Arrhenius behavior would be a straight line on this
plot. One can see rather clearly a crossover from a power law divergence (that
would emerge fully in the limit N → ∞ for T > TD) to the Arrhenius law
at low T . This behavior qualitatively resembles the behavior expected for
structural glasses where the different valleys in the rugged energy landscape
for T < T0 are separated by finite (free) energy barriers. In contrast to this
one knows that in the Potts glass in the limit N →∞ these barriers are truly
infinite if T < TD, and hence the dynamics is strictly nonergodic.
Similar finite size effects affect also the behavior of static properties [27,28,29,30].

One might wonder whether it is possible to use these finite size effects to ap-
ply standard finite size scaling analyses to extract reliable information on the
location of the static transition temperature from the simulations. Unfortu-
nately the answer is “no”: As Fig. 7.12 shows, the standard method [69] of
locating a static transition from the intersection point of the order parameter
cumulant gives rather misleading results here since the curve seem(!) to in-
tersect at a wrong temperature. Thus one must conclude that there is need to
better understand finite size effects for such unconventional glass transitions
as sketched in Fig. 7.9, before one can study them reliably with simulations.
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Fig. 7.11. Arrhenius plot of the relaxation time τ of the 10-state mean field Potts
glass model for different system sizes. Error bars of τ are mostly due to sample-to-
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∞, the relaxation time is predicted to diverge with a power-law. From Brangian et
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line shows the location of the static transition temperature T0 as predicted by the
exact solution [66]. The inset is an enlargement of the region where the three curves
intersect. From Brangian et al. [28].
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7.5 The Bead-Spring Model: A Coarse-Grained Model
for the Study of the Glass Transition
of Polymer Melts

We now draw attention to a model which is intermediate between the ab-
stract model as considered in the previous section and the chemically real-
istic model of silica melts discussed in Sect. 7.2. This intermediate model is
a coarse-grained model of glassforming polymer melts. Short polymer chains
are described by a bead-spring model, with a chain length of N = 10. The
(effective) monomers interact with each other via a truncated and shifted
Lennard-Jones potential,

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6] + C , r ≤ rc = 2.21/6σ (7.11)

while ULJ(r) = 0 if r > rc. The constant C is chosen such that ULJ is
continuous at r = rc.
The spring potential present between two neighboring beads is given by

UFENE(l) = −(k/2)R2
0 log[1− (l/R0)2] (7.12)

with the following values of the constants [31]:

ε = 1 , σ = 1 , k = 30 , R0 = 1.5 . (7.13)

This choice for the parameters creates frustration in the model: the minimum
of the bond potential along the chain occurs at a position lmin ≈ 0.97 that is
incompatible with the minimum position rmin ≈ 1.13 of the Lennard-Jones
potential, as far as the formation of simple crystal structures is concerned.
This conflict between these two length scales prevents crystallization very
efficiently, and the resulting structure of the melt and the corresponding
glass resembles corresponding experimental data very nicely, as has already
been demonstrated in Fig. 7.1.
If one carries out “slow” cooling experiments one finds that the volume per

monomer shows at a temperature Tg ≈ 0.41 a kink [32]. This signals that the
system has changed from the liquid branch to the glass branch and hence has
fallen out of equilibrium. Qualitatively, the data looks again very similar to
that of corresponding experiments [70]. However, if one compares experiment
and simulation more quantitatively, one notes again a big disparity in the
cooling rates: In the simulation the temperature was reduced by ΔT = 0.02
every 500000 MD time steps, each time step being δt = 0.002τMD with
τMD = σ(m/ε)1/2 , m being the effective mass of the monomeric units. If
one estimates that τMD corresponds roughly to 10−11s, and that T = 1
corresponds to 500K, one arrives at a cooling rate of ΔT/Δt ≈ 109K/s. While
this estimate is three orders of magnitude smaller than the corresponding
cooling rate for the silica melts [50], it is still many orders of magnitude
larger than the corresponding experimental cooling rates. Hence also in this



218 Kurt Binder et al.

case there is a huge gap between the cooling rates accessible in simulations
and those used in real experiments.
This model yields also qualitatively very reasonable results for the relax-

ation dynamics: The self-diffusion constant can be fitted well by the Vogel-
Fulcher law given by (7.1), with TV F ≈ 0.34, below the kink temperature
Tg ≈ 0.41. The mode coupling critical temperature is located at Tc ≈ 0.45,
above the kink temperature, and the ratios Tc/Tg and Tc/TV F are quite rea-
sonable. Although in the simulation only 1200 monomers were used, a nice
plateau is found in the intermediate incoherent scattering function φs

q(t), see
Fig. 7.13. Hence one can conclude that no strong finite size effects are present
for this model.
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Fig. 7.13. Comparison of the incoherent intermediate scattering function φs
q(t)

for the bead-spring model at T = 0.48 and q ≈ 6.9 [≈ maximum of S(q),
cf. Fig. 7.1] with various approximations: a Gaussian approximation (dashed
line), φS

q = exp[−q2g0(t)/6], where g0(t) is the mean square displacement of the
monomers. The mode coupling fit for the regime of the so-called “β−relaxation”
(solid-line) and a fit with the Kohlrausch function {Eq. (7.2), dotted line} also are
included. The non-ergodicity parameter f is indicated as a horizontal dashed line.
From Baschnagel et al. [14].

Also the Rouse modes [71] which describe the mesoscopic Brownian mo-
tion of the polymer chains on length scales that are between monomer-
monomer distances and the coil size, are found to relax over almost two
decades in T − Tc with relaxation times that show the mode coupling power
law [33], see Fig. 7.14. Only very close to Tc, for T ≤ 0.46, can one see small
indications that the singularity at Tc is in fact rounded off. This model has
allowed many very impressive tests [35,37] of mode coupling theory, similar
to an often studied binary Lennard-Jones mixture [12,72]. But similar to the
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Fig. 7.14. Variation of the relaxation time τp of the Rouse modes with the mode
index p for the bead spring model plotted vs. T − Tc, showing also a power law fit
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fit for all p shown. From Baschnagel et al. [33].

case in the latter model, it has so far turned out impossible to study temper-
atures for T < Tc in thermal equilibrium. And none of these models - neither
the model for SiO2, nor the binary Lennard-Jones model [12] nor the present
beadspring model - could provide any clarification about the validity of the
entropy theory [17].

7.6 The Bond Fluctuation Model Approach
to Glassforming Polymer Melts

The bond fluctuation model [6,38,39,40,41,42,43,44,45,46,47] is an even more
abstract model of polymers than the bead-spring model discussed in the pre-
vious section, since it forces the chains to “live” on a simple cubic lattice,
and all motions on scales smaller than a lattice constant are completely sup-
pressed. In this model a polymer is represented again as a chain of effective
monomers connected by effective bonds, but now each effective monomer is
described by an elementary cube on the lattice that blocks all 8 sites at the
corners of the cube from further occupation (Fig. 7.15). The length of the
effective bonds is allowed to vary from 2 to

√
10 lattice constants (taken as

length unit in this section). The only nonbonded interaction is the one of ex-
cluded volume. The dynamics of the random conformational changes of the
real polymer is represented in a crude way by attempted hops of randomly
chosen monomers in randomly chosen lattice directions. If about one half
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Fig. 7.15. Sketch of a possible configuration of monomers belonging to two dif-
ferent chains in the bond fluctuation model of a polymer melt. For one monomer
of the lower chain, an attempted move is indicated; this jump is forbidden, how-
ever, since it violates the excluded volume constraint. Also the choice of a two-
state energy function is indicated, namely H(b) = 0 if the bondvector b equals
bmin = (0, 0, ± 3a) or a permutation thereof (a is the lattice spacing, chosen as
unit of length in the following), and H(b) = ε = 1 else. Note that if a bond takes a
ground state bond bmin it blocks automatically 4 sites (the 4 sites are highlighted
by empty circles). From Baschnagel et al. [39].

of all lattice sites are occupied, the system behaves like a dense melt, and
even short chains with chain length N = 10 show already typical polymer-
properties, e.g. the scaling of the radius of gyration with

√
N , etc.

Since real polymers show with decreasing temperature an increase of the
persistence length and hence of the chain radius, it is natural to model this
effect by an effective potential U(l) for the length of the effective bonds,
energetically favoring long bonds. If one chooses as a minimum of this po-
tential U(lmin = 3) = 0 while U(l) = ε = 1 for all other bond lengths l, one
also incorporates “geometric frustration” (Fig. 7.15) into the model: Each
bond that reaches its ground state wastes the four lattice sites in between
the adjoining effective monomers, which are completely blocked for further
occupation. From the point of view of packing as many effective monomers
as possible in a dense melt on the lattice, the bonds that waste lattice sites
are very unfavorable. Hence configurational entropy favors short bonds that
do not waste any other lattice sites for further occupation. Thus a conflict
between entropy and energy is created, which is responsible for the glass
transition observed in the Monte Carlo simulations of this model.
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This model has the big technical advantage that it can be equilibrated
even at relatively low temperatures by the so-called “slithering snake algo-
rithm”. In this type of Monte Carlo moves one randomly attempts to remove
a bond from one chain end and attach it to the other chain end in a randomly
chosen orientation [44]. Although this algorithm does not correspond to any
physically realistic dynamics of polymers it is a perfectly admissible Monte
Carlo move for studying equilibrium properties. Using this algorithm, thermal
equilibrium can be established at rather low temperatures, such as T = 0.16,
where after 107 steps with the conventional “random hopping” algorithm the
autocorrelation of the end-to-end vector of the chains still has not decayed
below 90% of its starting value [46]. If we wish to study dynamical properties
of this model, we first perform a run with this slithering snake algorithm,
to obtain initial states that are characteristic for thermal equilibrium. Sub-
sequently we can start a run with the normal random hopping moves of the
effective monomers, which thus yields a physically reasonable description of
the dynamics [46]. If one estimates that one Monte Carlo Step per monomer
corresponds to about 10−12 seconds in real time, a run of 107 steps would
reach a physical time of 10−5 seconds, which is several orders of magnitude
longer than the typical time scales accessible with molecular dynamics. Using
this algorithm it was hence possible to make a very nice test of mode coupling
theory [42,43], resulting in Tc ≈ 0.15 while [46] TV F = 0.125 ± 0.005. How-
ever, the investigation of the relaxation dynamics in the regime TV F < T ≤ Tc

seems to be very difficult also in the framework of this lattice model, and in
fact has not yet been attempted.
Using the bond fluctuation model it was also determined how the glass

transition temperature Tg depends on the length of the chain [41] and the
results are compatible with the law

Tg(∞)− Tg(N) ∝ 1/N . (7.14)

Such a dependence has also been found experimentally [73], and is one of
the most notable predictions of the entropy theory of Gibbs and Di Marzio
[17]. Therefore many experimentalists believe that this theory is correct. How-
ever, this conclusion is premature, as a study of the configurational entropy
for the present lattice model shows (Fig. 7.16). While the entropy does indeed
decrease rather strongly with increasing value of inverse temperature, start-
ing out from an “athermal melt” (corresponding to infinite temperature),
this decrease becomes slower when one approaches the vicinity of Tc, and
the simulation data do not show that the entropy vanishes, although they
also cannot rule it out that this happens at a T far below Tc. However, if
one works out the Gibbs-Di Marzio theory [17] explicitly for the present lat-
tice model (all the input parameters of the theory [17] can also be extracted
from the simulation, so there are no adjustable parameters whatsoever in this
comparison!), one sees that the theory underestimates the actual entropy con-
siderably at all temperatures. In particular this failure is responsible for the
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Fig. 7.16. Comparison of the temperature dependence of the entropy per lattice
site as obtained from the simulation of the bond fluctuation model (open circles)
with the theoretical predictions of Gibbs and Di Marzio [17], Flory [74] and Milchev
[75]. Note that the estimates for Tc and TV F are Tc ≈ 0.15 and TV F ≈ 0.125.
Therefore the vanishing of the entropy at T ≈ 0.18 is an artifact due to inaccurate
approximations involved in the calculation of S(T ) via the entropy theory [17].
From Wolfgardt et al. [45].

vanishing of the entropy at TK ≈ 0.18, which obviously is a spurious result,
since this temperature is even higher than Tc, well in the melt regime where
the polymer system is a liquid and not a glass. In fact, a slightly different
approximation due to Milchev [75] renders the entropy nonnegative at all
temperatures, but deviates now a bit from the simulation data in the other
direction. Thus, these investigations show that although (7.14) does indeed
hold it does not imply anything about the validity of the Kauzmann “entropy
catastrophe”.

7.7 Can One Map Coarse-Grained Models
onto Atomistically Realistic Ones?

From the above comments it is clear that in simulations of simplified coarse-
grained models the range of times one can span is much larger than the one
for chemically realistic models that include atomistic detail (microseconds
rather than nanoseconds). On the other hand, the simplified models may
elucidate general concepts but they fail to make quantitative predictions on
the properties of particular materials. Thus the question arises whether one
can somehow combine the advantages of both approaches.
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An idea to do this is to make the coarse-graining process in a more sys-
tematic way and to construct coarse-grained models that “remember” from
which atomistic system they come from. For a polymer chain, coarse-graining
along the backbone of the chain may mean that if we label the covalent bond
consecutively (1, 2, 3, 4, 5, 6, . . . ) the bonds 1, 2, 3 form the effective bond I,
the bonds 4, 5, 6 form the effective bond II, etc [76]. The potentials on the
atomistic scale (e.g. potentials controlling the lengths of covalent bonds, the
angles between them, the torsional angles, etc.) have then to be translated
into suitable effective potentials for the length l of the effective bonds and the
angle Θ between them. The simplest choice would be to assume potentials of
the form

Ueff(l) =
1
2
u0(l − l0)2 , Veff(Θ) = 12υ0(cosΘ − cosΘ0)2 . (7.15)

In the past potentials of this type have indeed be extracted from the prob-
ability distributions P (l) ∝ exp[−Ueff(l)/kBT ] , P (Θ) ∝ exp[−Veff(Θ)/kBT ]
observed in the simulations of single chains (where long range interactions
need to be truncated, however) [76,77]. Of course, the effective parame-
ters u0, l0, υ0, Θ0 are somewhat temperature dependent, and in principle one
should deduce them from simulations of atomistically described melts con-
taining many chains, rather than from single-chain simulations [77]. The prac-
tical implementation of how one constructs best the effective potentials that
mimic one particular material is still an active topic of research [48,77].
A further important aspect is the question to what extent the dynam-

ics with such a coarse grained system reflects the dynamics of a real chain.
Here one needs to focus on the slowest local process, which are hops of small
groups of monomers to a new conformation, such that a barrier of the tor-
sional potential is crossed. Without such moves involving barrier crossing no
conformational changes can occur. In a typical case, e. g. for polyethylene at
T = 500K, the time scale for such hops is about two orders of magnitude
larger than the vibration times of bond lengths and bond angles. Only be-
cause of this separation of time scales one can hope that a coarse-grained
model can describe the essential features of the slow dynamics in the poly-
mer melt at all, if the time units are properly rescaled. As shown by Tries
et al. [48], the knowledge of the torsional potentials allows, using a an ap-
proach that resembles transition state theory, to construct a “time rescaling
factor”, that gives the translation of the time unit of the Monte Carlo simu-
lations (attempted Monte Carlo steps per monomer) into physical time units
(Fig. 7.17). One sees that for polyethylene 1 Monte Carlo step corresponds
to 0.1 to 10ps, in the temperature region of interest. At high temperatures,
namely for T = 509K, the accuracy of the coarse-grained model of C100H202
was tested by running a molecular dynamics simulation of a united atom
model for about a nanosecond (which is of the order of the Rouse relaxation
time at this temperature) for comparison [48]. It is found that the agreement
between both approaches is almost quantitative. The advantage of the Monte
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Fig. 7.17. Temperature dependence of the time scaling factor converting the time
unit of the Monte Carlo simulation into femtoseconds, for the case of polyethylene.
The straight line shows that a simple Arrhenius law is a good approximation.
Adapted from Ref. [48].

Carlo simulation of the coarse-grained model is, however, that one can easily
study a supercooled melt also at T = 250K, a temperature which is basically
inaccessible to the molecular dynamics approach.
If one compares the results of the coarse-grained model to experimental

data, e. g. for the viscosity and its temperature dependence, the agreement is
encouragingly good but not perfect [48]. One aspect which is clearly missing
in the coarse-grained model is the description of attractive intermolecular
forces. Thus, while this approach of mapping atomistic models to coarse-
grained ones clearly has a great potential, there are still nontrivial problems
that need to be solved.

7.8 Concluding Remarks

In this brief review, the “state of the art” of computer simulations of glassy
systems was summarized. The main problem in this field is the problem of
bridging time scales - a supercooled fluid close to the glass transitions exhibits
a nontrivial dynamic behavior that extends from very fast processes (in the
picosecond time scale range) to very slow processes (with relaxation times of
the order of hours). Atomistic molecular dynamics simulations of chemically
realistic models (as exemplified here for the case of molten SiO2) can treat
only a very small part of this broad range of time scales, and also special
techniques such as the parallel tempering method can add only one or two
decades to this range but not more. (Note also that there are still some
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unsolved technical problems with this method [59]). While such atomistic
simulations are nevertheless useful, in particular since they complement the
time range directly accessible to experiment, and give a very detailed insight
into the interplay between structure and dynamics in supercooled fluids, they
clearly cannot answer questions on the nature of relaxation processes for
temperatures close to (the experimental) Tg, and the possible existence for an
underlying static phase transition (from a metastable supercooled fluid to a
metastable ideal glass) at a temperature TK < Tg. Also molecular dynamics
studies of coarse-grained models for melts of short, unentangled polymer
chains suffer from similar problems, although the effective cooling rates in
these models are about a factor of 103 smaller than in the model for silica,
and one can access relaxation times that are almost in the microsecond range.
These models are very useful as a testbed for the mode coupling description
of the glass transition in fragile glassformers, however. Furthermore they
have also allowed to gain very useful insight on the relaxation between the
local motions responsible for the glass transition (cage effect etc.) and the
more mesoscopic Brownian motion of the polymer chains (as described by
the “Rouse modes”, for instance).
A slightly more abstract model of the same systems, the bond fluctu-

ation model of glassforming polymer melts, corroborates these conclusions,
although due to its discrete nature it is somewhat less suitable to describe
the local structure of packing effective monomers in a polymer melt or their
motion on small scales (confined in a cage). However, this model has the
merit that it allows to compute the temperature dependence of the configu-
rational entropy S(T ) and thus to test the correctness of theories like the one
of Gibbs and Di Marzio. While it is found that the entropy S(T ) decreases
significantly if the polymer melt approaches the glass transition, there is clear
evidence that the theory of Gibbs and Di Marzio is quantitatively very un-
reliable since it underestimates S(T ) significantly at all temperatures, and
the “entropy catastrophe” that it predicts is clearly an artifact of inaccurate
approximations.
Finally, studies of an even more abstract model were discussed, the 10-

state Potts glass with mean field infinite range interactions. This model has
the advantage that it is known exactly that it has a dynamical (ergodic to
nonergodic) transition at TD as well as a static transition at a (slightly) lower
temperature T0, at which a glass order parameter appears discontinuously
and the entropy shows a kink. The conceptional disadvantage of this model,
however, is that it has a built-in quenched random disorder (via its ran-
dom exchange couplings) at all temperatures, unlike systems that undergo
a structural glass transition, which have no quenched disorder in the high
temperature phase (the supercooled fluid for T > Tg). Monte Carlo studies
of this model, intended to serve as a general testbed for systems with both a
dynamical and a static glass transition, show that unexpectedly large finite
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size effects occur, which are poorly understood. Thus even for this “simple”
model much more work is necessary.
While the anticipated progress in computer hardware and algorithmic

improvements will allow to extend the time ranges accessible in all these
simulations somewhat, there is not real hope that one can bridge the de-
sired 15 (or more) decades in time in this way. More promising in principle
is the approach of providing an explicit mapping between atomistic models
(which cover the fast processes) and coarse-grained models (which describe
the somewhat slower processes, in the 10ps to 1μs range), so that one ef-
fectively considers the same model system but with different approaches on
different time scales. Of course, this idea is difficult to work out consistently in
practice, and only modest first steps towards its realization have been taken.
Much more work in this direction is certainly very desirable in the future.
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Abstract. We identify the origin, and elucidate the character of the extended
time-scales that plague computer simulation studies of first and second order phase
transitions. A brief survey is provided of a number of new and existing techniques
that attempt to circumvent these problems. Attention is then focused on two novel
methods with which we have particular experience: “Wang-Landau sampling” and
Phase Switch Monte Carlo. Detailed case studies are made of the application of the
Wang-Landau approach to calculate the density of states of the 2D Ising model and
the Edwards-Anderson spin glass. The principles and operation of Phase Switch
Monte Carlo are described and its utility in tackling ‘difficult’ first order phase
transitions is illustrated via a case study of hard-sphere freezing. We conclude with
a brief overview of promising new methods for the improvement of deterministic,
spin dynamics simulations.

8.1 General Introduction

During the past half century there has been intense study of phase transitions
in an extremely broad range of materials. From the theoretical perspective
this has led to the development of relatively simple models that seek to cap-
ture the essential qualitative features of real systems. To obtain the phase
behaviour of such models, a wide variety of analytical techniques have been
developed. More recently, these pen and paper approaches have been supple-
mented by computer simulations.
The fundamentals of determining phase behaviour have long been under-

stood–statistical mechanics tells us that any equilibrium thermodynamic
properties of interest can be determined once the partition function is known.
However, the partition function is defined as a sum over all microstates of
the system. This immediately leads to difficulties because the number of mi-
crostates is huge for all but the very smallest systems. As a consequence, exact
enumeration of the partition function generally becomes impossible. Only for
a handful of special models is it possible to solve the problem exactly (at
least for some quantities), and such models consequently serve as invaluable
testing grounds for more generally applicable analytical and computational
techniques.
In view of the difficulties in solving model system exactly, one often resorts

to stochastic sampling schemes such as Monte Carlo (MC) simulation in order
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to gain information on the thermodynamic properties of model systems. MC
methods have proven themselves quite powerful and flexible in the study
of phase transitions in various areas of statistical physics [1]. Nevertheless,
serious problems can arise. Specifically, in the neighborhood of a first order
phase transition one encounters metastable states and hysteresis effects that
lead to extended sampling times and systematic errors in the estimation of
phase boundary loci. Similarly, at a second order phase transition, critical
slowing down renders it difficult to attain the large system sizes necessary for
the accurate determination of critical point parameters.
In this article we shall review in some detail the sources of difficulty with

traditional MC simulations of phase transition and shall describe a few of the
methods that have been developed to circumvent these difficulties. We shall
also briefly describe recent advances in simulation methods for the study of
deterministic time behaviour. We wish to emphasize at the outset that our
treatment is not meant to be exhaustive, and will only consider a few of the
many approaches that have been developed. We have surely devoted dispro-
portionately much space to our own contributions; this is mainly because we
can explain them best.

8.2 Problems and Challenges

8.2.1 Introduction to Metropolis Importance Sampling

MC simulation methods have been employed for over half a century and are,
in many respects, quite mature. The prototype approach, importance sam-
pling, was introduced by Metropolis et al [2] in 1953 and has been employed
extensively for a wide range of simulation studies. Owing to its simplicity
and ease of implementation it is still in widespread use today.
To illustrate the operation of the Metropolis algorithm let us conside the

simple Ising model–a lattice based two-state spin model. The Ising model
Hamiltonian is

E = −J
∑

<i,j>

σiσj , (8.1)

where J is the coupling constant, σ = ±1, and the sum extends over all
nearest neighbours.. There are several variations of the Metropolis approach,
but basically a single spin is chosen and flipped with a probability p depending
on the associated energy change ΔE:

p = min (1, exp(−ΔE/kBT )) (8.2)

The resulting spin configurations provide good visual information about the
nature of the clusters that develop as a phase transition is approached. This
is illustrated in Fig. 8.1, which shows a typical configuration of the 2d Ising
model near its second order phase transition (critical point).
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Fig. 8.1. A typical configuration near the critical temperature of the two dimen-
sional Ising model of 1024 × 1024 spins. White areas correspond to up spins and
black areas to down spins.

The sequence of states produced by the Metropolis algorithm constitutes
a random walk through the phase space of the model system. It is so de-
signed as to yield configurations with the correct equilibrium (Boltzmann)
probabilities. Consequently, estimates for ensemble averages of equilibrium
observables (such as the magnetisation or internal energy) can be obtained
simply by accumulating their values over many independent configurations.
The Metropolis method is, of course, not limited to lattice based spin sys-

tems and is also straightforward to apply to systems with continuous degrees
of freedom. A simple example is a fluid of hard particles, such as that con-
sidered in Sect. 8.3.2.4. However, when systems with continuous symmetry
are considered, the matter of the dynamical evolution of the system arises.
It is important to appreciate that the MC simulation dynamics of, for exam-
ple, a fluid, does not necessarily bear any relation to the time development
that would occur in a physical system. This is a general feature of most MC
algorithms, the utility of which is therefore limited in cases where one is
not interested in obtaining accurate dynamical information. Fortunately, this
disadvantage is potentially compensated in a variety of ways. Specifically,
freed from the strictures of realistic dynamics, the simulator is at liberty to
construct any number of imaginative sampling schemes, which go beyond
the importance sampling embodied by the Metropolis algorithm, and which
allow the system to explore phase space much more efficiently than would
be possible with realistic dynamics. This aspect of MC simulation will be a
recurring theme of the methods we describe below.
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8.2.2 Origin of Time-Scale Problems

The Metropolis method outlined above generally works well in single phase
regions of phase diagram. However it can become very inefficient in the vicin-
ity of a phase transition. The problems encountered (and the methods that
lead to their resolution) depend qualitatively on whether the transition is sec-
ond order or first order in character. Here we briefly summarize the principal
issues associated with each case.
On approaching a second order phase transition (critical point), the cor-

relation length ξ of order parameter fluctuations diverges like ξ ∼ (T−Tc)−ν ,
where T is the temperature, Tc is the critical temperature and ν > 0 a critical
exponent. The magnitude of the correlation length is a measure of the degree
of correlated configurational structure (essentially the cluster diameter). That
this is very large near the critical temperature is confirmed in Fig. 8.1. The
problem for MC simulation is one of autocorrelation time: since the clusters
are very large, it takes many steps of a local (single spin flip) algorithm to
produce a new statistically independent configuration, which in turn hinders
accumulation of unbiased statistics. This ‘critical slowing down’ can best be
quantified in terms of a characteristic relaxation time τ . As T → Tc this
relaxation time τ diverges as

τ = (T − Tc)−νz , (8.3)

where z is known as the dynamical critical exponent. Since in a simulation,
the correlation length ξ is bounded by the linear dimension of the system L,
one finds that as T → Tc, τ diverges as Lz. Consequently we are limited in
how close we can approach Tc, or in what size of system we can simulate,
because the correlations begin to dominate and the amount of time required
to produce uncorrelated configurations becomes excessive (c.f. Fig. 8.2). It is
also important to note that different observables have correlation times that
differ by a multiplicative factor so their correlation times may differ greatly
even though the dynamic critical exponent z is the same.
Turning now to first order phase transitions, the problems encountered in

MC simulations generally stem from barriers to sampling which hinder the
exploration of the coexisting phases. In order to obtain accurate estimates
for the location of a first order phase boundary, it is necessary for the sim-
ulation to pass back and forth many times between the coexisting phases;
doing so permits an accurate estimate of their relative statistical weights.
However, (and as we describe below), a simulation launched near a first or-
der coexistence point will not readily explore both coexisting phases. Instead
it will tend to remain in the phase within which it was initiated–this is the
phenomenon of metastability. Transitions between the coexisting pure phases
are suppressed due to the intrinsically low probability (large free energy) of
the interfacial states through which the system must pass in traversing the
inter-phase route. The result is extended sampling times which grow rapidly
with system size. For systems with “complex” order, e.g. spin glasses, the
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Fig. 8.2. Divergence of the correlation times with increasing lattice size for the
magnetization and energy for the three dimensional Ising model at Tc. From
Wansleben and Landau [3].

problem is accentuated due to the presence of many competing statistically
important regions of phase space, each separated by high barriers from the
others.

8.2.3 Traditional Computational Solutions

In some cases it is possible to optimize the Metropolis method using clever
algorithms and computer coding schemes. For example, in the case of lat-
tice spin models, instead of flipping a single spin at each MC step, one can
flip many spins. One such approach, suitable for vector or massively par-
allel computers, is “checkerboard updating” which decomposes the lattice
into inter-penetrating sub-lattices that are considered alternately. Further
speed-ups can be realized using “multispin coding” in which several spins are
packed into a single computer word and are operated upon simultaneously.
Unfortunately, such methods do not generalize well to off-lattice models such
as fluids. Moreover, their utility remains limited even for lattice-based spins
models because they do not always allow increases in system sizes of the mag-
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nitude needed to overcome the growth of timescales outlined above. A few
special purpose Ising model computers have been constructed, and although
these have provided enhanced performance they cannot solve the intrinsic
limitations of the Metropolis method.

8.3 Some “Recent” Developments

8.3.1 Second Order Transitions

Many of the MC simulation methods commonly deployed for the study of
phase transitions and critical phenomena, have been described in detail else-
where [1]. Although the workhorse for many years was the Metropolis al-
gorithm, new, efficient algorithms have allowed simulation to achieve the
resolution which is needed to accurately locate and characterize phase tran-
sitions. For the examination of second order transitions in lattice-based spin
models, cluster-flip algorithms, beginning with the seminal work of Swendsen
and Wang [4], have been used to reduce critical slowing down near second
order transitions. We consider these in some detail below.
Another invaluable technique in the context of both second and first order

transitions, is histogram extrapolation [15]. The method (which is outlined in
Sect. 8.3.2.3) can be applied in the analysis of simulation data to increase the
amount of information that can be gleaned from it. However, its applicability
is limited in large systems by the statistical quality of the “wings” of the
histogram. This latter effect is quite important in systems with competing
interactions for which short range order effects might occur over very broad
temperature ranges, or even give rise to frustration that produces a very
complicated energy landscape and limits the efficiency of other methods.

8.3.1.1 Cluster Flipping
Successive configurations generated by a MC simulation of a spin model can
be more rapidly decorrelated if each trial update involves more than one spin
flip at each trial update. The question of how to do that in an intelligent way
eluded researchers for many years until a little known theorem in theoretical
physics was used to design new methods that flip correlated clusters of spins.
The first steps were taken by Kasteleyn and Fortuin [5] who showed that
it was possible to map a ferromagnetic Potts model onto a corresponding
percolation model. In the percolation problem states are produced by throw-
ing down particles, or bonds, in an uncorrelated fashion; hence there is no
critical slowing down. The Fortuin-Kasteleyn transformation thus permits a
problem with slow critical relaxation to be mapped into one where such ef-
fects are largely absent. The Swendsen-Wang approach [4] replaces each pair
of interacting Potts spins on the lattice by a bond on an equivalent lattice
with probability p where

p = 1− exp(K) (8.4)
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and K = −J/(kBT ). All clusters of sites which are produced by a connected
network of bonds are identified, and then each cluster is randomly assigned a
new spin value, using a random number, i.e. each site in a cluster must have
the same new spin value.
Since the probability of placing a bond between pairs of sites depends

on temperature, the resultant cluster distributions will vary dramatically
with temperature. Near a critical point a rich array of clusters is produced
and each resultant configuration differs substantially from its predecessor.
The dynamic critical exponent z is reduced from a value of just over 2 for
Metropolis single-site spin flipping to a value of about 0 (actual log) in 2-
dim. and 0.5 in 3-dim. [6]. The overall performance of the algorithm also
depends strongly on the complexity of the code which is usually much greater
than for single spin-flip methods. Hence, for small lattices the Swendsen-
Wang technique may actually be slower in real time!, but for sufficiently
large lattices it will eventually become more efficient.
One obvious shortcoming of the Swendsen-Wang approach is that sig-

nificant effort is expended in dealing with small clusters as well as large
ones. These small clusters do not contribute to the critical slowing down, so
their consideration does not accelerate the algorithm. In order to partially
eliminate this constraint, Wolff [7] proposed an alternative algorithm based
on the Fortuin-Kasteleyn theorem in which single clusters are grown and
flipped sequentially; the resultant performance generally exceeds that of the
Swendsen-Wang method. The algorithm begins with the (random) choice of
a single site. Bonds are then drawn to all nearest neighbors which are in the
same state with the same probability as for Swendsen-Wang sampling. One
then moves to all sites in turn which have been connected to the initial site
and places bonds between them and any of their nearest neighbors which
are in the same state with probability p. The process continues until no new
bonds are formed and the entire cluster of connected sites is then flipped.
Another initial site is chosen and the process is then repeated. The Wolff
dynamics has a smaller prefactor and smaller dynamic exponent than does
the Swendsen-Wang method. Of course the measurement of MC time is more
complicated since a different number of spins is altered by each cluster flip.
The generally accepted method of converting to MCS/site is to normalize the
number of cluster flips by the mean fraction of sites flipped at each step.

8.3.1.2 The N-fold Way and Extensions
At this point we briefly review a fairly old algorithm that has found new
utility through the development of powerful extensions. At very low tem-
peratures the flipping probability for the Metropolis method becomes quite
small and virtually nothing happens for a long time. In order to avoid this
wasteful procedure Bortz et al [8] introduced an event driven algorithm (the
“N-fold Way”) in which a flip occurs at each step of the algorithm and then
the lifetime of the preceding state is calculated.
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First we observe that there are only a small number of possible local
environments which a spin can possibly have and consequently a limited
number of different flipping probabilities. All spins are collected into lists,
in which each member has the identical energetic local environment. For an
Ising square lattice there are a total of 10 possible combinations of a spin and
“interacting environment”, i.e. every spin in the system can belong to one of
only 10 classes. (For other interactions the number of classes may differ, but
in all cases will be some modest size integer N. Hence the name N-fold way.)
The total probability of any spin of class l flipping in a given step is

pl = nl exp (−ΔEl/kBT ) (8.5)

where nl is the number of spins which are in class l . The integrated prob-
ability QN of “some” event occurring in a given step is simply the sum of
the probabilities for all N classes. A random number generated to determine
the class from which the next spin to be overturned will come, and once the
class has been chosen, another random number must be chosen to pick a spin
from among those in the class. Finally, a 3rd random number will be used to
determine how much time has elapsed before this event has taken place. Each
time a spin is flipped, it changes class so it must then be removed from the
list belonging to its original class and added to the new list corresponding to
its new class. In addition, all of its (interacting) near neighbors change class.
Efficient bookkeeping obviously is important. Treating the flipping event as
a stochastic process, we can generate a random number ζ between 0 and 1
and find that the “lifetime” of the state before flipping occurs is

Δt = −(τo/QN ) ln ζ (8.6)

where τo is the time needed to carry out a spin flip. The thermodynamic
averages of properties of the system are then calculated by taking the lifetime
weighted average over the different states which are generated. The N-fold
way is rather complicated to implement, but at low temperatures the net
gain in speed can be many orders of magnitude.
A recent generalization of the N-fold way algorithm (“absorbing Markov

chains”, or MCAMC [9] ), was shown to offer substantial advantage for
the study of magnetization switching in nanoscale ferromagnets and related
problems. At low temperatures a strongly magnetized ferromagnet will not
immediately reverse when an oppositely directed magnetic field is applied
because there is a large nucleation barrier to the formation of a cluster of
overturned spins. In a Metropolis simulation very long times are then needed
to see the magnetization reversal. The MCAMC approach extends the N-
fold way algorithm to allow the simultaneous flipping of more than one spin
to facilitate formation of a nucleation cluster. The “level” of the method
determines how many spins may be overturned in a single step. The level-1
MCAMC is essentially the N-fold way [9] and is best used for an initial
state in which all spins are up. A random number ζ is picked and used to
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determine the lifetime of the state. A spin is then randomly chosen and
overturned. Level-2 MCAMC offers a decided advantage in the case that the
nucleation cluster size is at least two, since it avoids the tendency to merely
overturn those spins that have just been flipped. The level-2 MCMAC begins
with a fully magnetized state and overturns 2 spins. Then a transient sub-
matrix T is defined to describe the single timestep transition probabilities,
i.e. for overturning one spin to reach a transient (intermediate) state, and
the recurrent submatrix R which gives the transition probabilities from the
transient to the absorbing (final) states. Again a random number ζ is chosen
and the lifetime of the state is determined by νT m

< ζ < νT m−1
e where ν

is the vector describing the initial state and e is the vector with all elements
equal to one. Another random number is then generated to decide which spins
will actually flip. Following generation of this “initial cluster”, the N-fold way
may then be used to continue. This method may be systematically extended
to higher order when the size of the nucleation cluster is larger so that the
process of overturning a cluster is “seeded”.

8.3.1.3 “Wang–Landau” Sampling
We shall now describe a new, efficient MC algorithm that offers substantial
advantages over existing approaches and takes a different approach to sam-
pling for statistical systems [10]. In contrast to “traditional” Monte Carlo
methods that generate canonical distributions at a given temperature g(E) ×
e−E/KBT , this method estimates the density of states g(E) accurately via a
random walk which produces a “flat” histogram in energy space. Of course,
multiple random walks, each restricted to a different range of energy, may be
performed to further improve the efficiency. The resultant pieces of g(E) can
be joined together and used to produce canonical averages for thermodynamic
quantities at essentially any temperature.
The algorithm relies on the observation that if a random walk in en-

ergy space is performed with a probability proportional to the reciprocal of
the density of states 1

g(E) , then a flat histogram is generated for the energy
distribution. This is done by modifying the estimated density of states sys-
tematically to produce a “flat” histogram over the allowed range of energy
and simultaneously making the density of states converge to the correct value.
Some initial estimate is made for the density of states, e.g. g(E) = 1. The
random walk in energy space proceeds by flipping spins randomly; if E1 and
E2 are energies before and after a spin is flipped, the transition probability
of a spin flip is

p(E1 → E2) = min(
g(E1)
g(E2)

, 1). (8.7)

Each time an energy level E is visited, g(E) is updated by multiplying the ex-
isting value by a modification factor f > 1, i.e. g(E)→ g(E)∗f , starting with
a large enough value that g(E) grows quickly, e.g. f0 = e1 � 2.71828.... The
random walk continues until the accumulated histogram H(E) is “flat”, the
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modification factor is then reduced using some simple recipe, e.g. f1 =
√
f0,

the histogram is reset to H(E) = 0, and a new random walk is begun. This
process continues for n iterations, until fn is smaller than some predefined
final value (such as ffinal = exp(10−8) � 1.00000001). Typically, the phrase
“flat histogram” means that the histogram H(E) for all possible E is not
less than ∼ 80% of the average value 〈H(E)〉. Since g(E) is modified every
time the state is visited, only a relative density of states is produced at the
end of the simulation, and the results must be normalized. This can be done
by using the condition that the number of ground states for the Ising model
is 2 to re-scale the density of states; and if multiple walks are performed
within different energy ranges, they must be matched up at the boundaries
in energy.
During the early stages of iteration the algorithm does not satisfy detailed

balance, since g(E) is modified continuously; however, after many iterations
the modification factor approaches 1 and detailed balance is recovered to high
precision. Then, from (8.7):

1
g(E1)

p(E1 → E2) =
1
g(E2)

p(E2 → E1) (8.8)

where 1
g(E1)

is the probability at the energy level E1 and p(E1 → E2) is the
transition probability from E1 to E2 for the random walk. Consequently, the
detailed balance condition is satisfied to within an accuracy proportional to
ln(f).
The convergence and accuracy of this algorithm may be tested for a sys-

tem with a second order transition, the L×L Ising square lattice with near-
est neighbor coupling [11,15,12]. In Fig. 8.3, final results for the densities
of states for several finite lattice sizes are compared with exact results [13].
The quality of the data can best be assessed by looking at the relative error
ε(log(g(E)))defined as ε(X) ≡ |(Xsim −Xexact)/Xexact| for a general quan-
tity X, and as the inset shows the agreement is excellent. With this algorithm
g(E) can be estimated efficiently even for large systems; moreover, the free
energy and the entropy are also accessible, unlike in conventional MC simu-
lations. The free energy is given by

F (T ) = −kBT ln(Z) = −kBT ln(
∑

E

g(E)e−βE). (8.9)

A comparison between the simulational data and the exact free energy
for the Ising square lattice [14] for L = 256 is shown in Fig. 8.4. Here, too,
the agreement is excellent!

8.3.2 First Order Transitions

It is common when discussing the character of first order phase transitions
to do so in terms of the mathematical properties of thermodynamic response
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functions such as the heat capacity or the order parameter as the transition is
traversed [16]. An alternative view, one that is more natural in the context of
Monte Carlo simulation, considers instead the probabilities associated with
the sets of microstates (configurations) identifiable as belonging to each of
the pure phases that coexist on a first order phase boundary.

8.3.2.1 Free Energy Comparison:
The Statistical Mechanics Perspective
The situation we shall consider is illustrated schematically in Fig. 8.5 which
depicts the configuration space of some system that can exist in either of
two phases A and B. The sets of pure phase configurations are shown as
disjoint “islands”. The region between the pure phase states corresponds to
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m

Phase A

Interfacial
configurations

Phase B

Fig. 8.5. Schematic representation of configuration space for a system that can
exist in two phases.

interfacial configurations in which a portion of the system is found in phase
A, separated by an interface from the remainder which is in phase B.
Typically the location of the system in configuration space is specified in

terms of a fluctuating order parameter m which serves to distinguish whether
the system is in phase A, phase B or somewhere in between. For example, in
a simple ferromagnet such as the Ising model, m is the magnetization, while
for a fluid undergoing a liquid-gas phase transition it is usually taken to be
the fluid density.
The key to locating a first order phase transition by simulation is the abil-

ity to measure the free energy difference between the two coexisting phases.
Unfortunately, a single simulation cannot deliver the absolute free energy
of a given phase. However, subject to certain provisos, it can measure the
free energy difference between two phases. To see this, consider the canonical
distribution of microstates, which is given by

p({σ}) = e
−βH({σ})

Z
, (8.10)

where {σ} labels a microstate (i.e. a configuration), H({σ}) is the system
Hamiltonian, β is the inverse temperature and Z is the partition function.
Suppose, now, that we sum over all microstates identifiable as belonging to
a certain phase γ, then

pγ =
∑

{σ}∈γ

p({σ}) (8.11)

=
1
Z

∑

{σ}∈γ

e−βH({σ})

≡ Zγ

Z
,
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where the last step serves to define the configurational weight Zγ of the phase
γ. The relative probabilities of two phases A and B is then

RAB ≡ pA
pB
=
ZA

ZB
(8.12)

≡ e
−βFA

e−βFB

where Fγ denotes the free energy of phase γ. It follows that the free en-
ergy difference between two phases A and B is simply proportional to the
logarithm of the ratio of their a-priori probabilities:

FA − FB = − 1
β
lnRAB , (8.13)

Clearly this equation implies that precisely at coexistence (FA = FB) the
system will be found with equal probability in each of the two phases.
In order to exploit (8.13) a simulation procedure is needed that will mea-

sure the requisite probability ratio. To achieve this the simulator must con-
trive a scheme by which both phases are visited many times in the course of
single simulation run. Monitoring the relative frequency with which the sim-
ulation is found in each phase provides a direct estimate of RAB . Practically
this is can be done by appeal to the measured form of the order parame-
ter distribution function p(m). In a simulation this distribution is normally
accumulated in the form of a histogram. Formally it is given by

p(m) =
1
Z

∑

{σ}
δ(m−m({σ}))e−βH{σ} , (8.14)

where the sum extends over all microstates of the system.
At a first order phase transition, the form of p(m) is strongly double

peaked in character, as shown schematically in Fig. 8.6. States having m
values close to the peak positions of p(m) correspond to pure phase config-
urations, while those in the trough between the peaks correspond to mixed-
phase (interfacial) configurations. Compared to pure phase states, interfacial
configurations have an intrinsically small probability on account of their high
surface tension. Accordingly such states are visited only rarely in the course
of a simulation at coexistence.
In principle, measurement of the ratio of the integrated weights (areas)

under the two peaks provide a direct estimate of RAB , whence the location
of coexistence can be estimated. Unfortunately, the strongly double peaked
character of p(m) complicates accurate measurement of its form. The low
probability of interfacial states renders spontaneous transitions between the
two coexisting phases very infrequent and results in greatly extended corre-
lation times. This in turn hinders the accumulation of independent statistics
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p(m)

m

Fig. 8.6. Schematic of the form of the order parameter distribution function at a
first order phase boundary.

on the relative peak weights and estimates for coexistence parameters. In the
next subsection we discuss one effective method of bridging this time scale
gap, although others exist, see e.g. ref. [17,18].

8.3.2.2 Multicanonical Monte Carlo
The basic idea underpinning Multicanonical Monte Carlo [19] is to preweight
the evolution of the MC Markov chain so as to preferentially sample the in-
terfacial configurations of intrinsically low probability. So doing allows the
simulation to pass with ease from one pure phase to the other, thereby in-
creasing the frequency of transitions and hence the statistical quality of the
estimate for RAB . The effects of the imposed bias on this estimate (as well as
those for other observables) can be corrected straightforwardly. The situation
is illustrated schematically in Fig 8.7.
The bias in a multicanonical simulation is imposed via the Hamiltonian.

Instead of simulating with the bare Hamiltonian of the system of interest we
define an “effective Hamiltonian” given by

H̃({σ}) = H({σ}) + η(m) , (8.15)

where η(m) is a preweighting function, which must (as described below) be
prescribed in advance. Simulating with this effective Hamiltonian, we mea-
sure the preweighted order parameter probability distribution function ˜p(m),
given by

p̃(m) =
1
Z̃

∑

{σ}
δ(m−m({σ}))e−βH̃({σ}) . (8.16)
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Phase A Phase B

m
Fig. 8.7. Schematic illustration of the multicanonical method. By appropriate
preweighting of the MC Markov chain, the probability of sampling interfacial con-
figurations is enhanced.

The true (Boltzmann distributed) weight function p(m) is recovered by un-
folding the effects of the imposed weights:

p(m) = eη(m)p̃(m) . (8.17)

It transpires that there exists a choice of η(m) for which p̃(m) is constant
in the region ofm between the two peaks of p(m). Under these circumstances,
the system performs a one-dimensional random walk over the entire domain
of m, thereby permitting efficient accumulation of statistics for p̃(m). The
effects of the bias are subsequently unfolded from p̃(m) (via (8.17)) to obtain
the desired unbiased function p(m). Figure 8.8 shows an example for the
subcritical Ising model.
Inspection of (8.14), (8.16), and (8.17) reveals that to realize a flat dis-

tribution, p̃(m) = constant, requires that the preweighting function be pre-
scribed as η(m) = ln p(m). But p(m) is of course just the function we are
trying to find. Thus it is not possible in general to immediately implement an
optimal multicanonical preweighting. Instead it is necessary to construct a
suitable weight function from scratch via an iterative procedure. A number of
strategies for achieving this have been proposed and tested in the literature.
We shall not review them here, but refer the interested reader to the recent
review of Berg [23].

8.3.2.3 Tracking Phase Boundaries: Histogram Extrapolation
Use of the multicanonical method permits efficient determination of a point
on a first order phase boundary. However, the task of tracing out a whole
coexistence line in a (possibly) multidimensional space can nevertheless be a
laborious one due to the need to determine many coexistence points. More-
over, at first sight it would seem necessary that at each state point studied
a suitable preweighting function be determined from scratch. Fortunately, as
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Fig. 8.8. Results from a multicanonical simulation of the L = 10, 3D-Ising model
at T = 0.95Tc in zero field. Shown is the preweighted form of the order parameter
distribution function p̃(m) and the corresponding form of p(m).

we shall now show, use of histogram extrapolation greatly simplifies these
tasks.
Histogram extrapolation rests on the observation that histograms of ob-

servables accumulated at one set of model parameters (e.g. β and a field h
conjugate to the order parameter) can be reweighted to provide estimates of
histograms for other values of these parameters. Consider the joint probabil-
ity distribution of energy and order parameter at the particular parameter
values β = β0 and h = h0. Formally p(m,E|β0, h0) is given by

p(m,E|β0, h0) = 1
Z0

∑

{σ}
δ(E − E({σi}))δ(m−m({σi})) e−β0H0 , (8.18)

where H0({σ}, N) ≡ E({r}) + h0m. It is easy to show that an estimate for
the form of p(m,E) at the parameter values β = β1, h = h1 can be obtained
from the measured p(m,E|β0, h0) by the simple reweighting [15] :

p(m,E|β1, h1) = Z1

Z0
e−(β1H1−β0H0)p(m,E|β0, h0) , (8.19)

where the ratio Z1/Z0 is an unimportant constant that is effectively ab-
sorbed into the normalization. If desired, this joint distribution can then be
integrated to yield the order parameter probability density function at β1, h1:

p(m|β1, h1) =
∫

dE p(m,E|β1, h1) . (8.20)

In principle, a single simulation at one state point in the phase diagram
suffices to obtain information for all other state points. Unfortunately the
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reality is less auspicious. Owing to finite sampling time, it is not possible
in practice to extrapolate a single histogram obtained at β0, h0 to arbitrary
values of β1, h1. Instead, the parameters to which we extrapolate must be
fairly close to those at which the simulation was actually performed or the
procedure loses accuracy. One way of dealing with this problem is to perform
a sequence of separate simulations at strategic intervals across the range of
model parameters of interest. The role of histogram reweighting is then to
interpolate to the regions of parameter space between the simulation points.
We note in passing that it is possible to combine (in a self-consistent fashion)
the results of a number of different simulations at different model parameters
and perform histogram extrapolation on the aggregate data. For a description
of this more sophisticated procedure, we refer the reader to Refs. [15] and
[20].
Histogram extrapolation can be combined with the multicanonical en-

semble method to deliver a powerful method for tracking a phase boundary
through a multidimensional parameter space. The procedure comprises two
stages. Firstly it is bootstrapped by finding the form of p(m) at some ar-
bitrary near-coexistence state point. This is achieved via a multicanonical
simulation conducted at some guessed values of the coexistence parameters.
Generally speaking, however, unless this guess is very good, the peaks in the
resulting form of p(m) will have unequal areas. The guess is therefore sub-
sequently refined by tuning the model parameters (within the extrapolation
scheme) to give equal areas under the two peaks.
In a similar way, the histogram for p(m) can be extrapolated to obtain

estimate of other state points further along the phase boundary, provided
of course that they lie within the range of reliable extrapolation. Addition-
ally, for each phase boundary point considered, the extrapolation delivers an
estimate of the associated form of p(m). The latter serves as a suitable mul-
ticanonical preweighting function for a fresh simulation conducted at a new
coexistence point, the results of which can themselves be used to extrapolate
even further along the phase boundary. Clearly by iterating this procedure
one traces out the full coexistence line without ever having to determine a
new preweighting function from scratch. Further details of this approach can
be found in refs.[21,22].

8.3.2.4 Phase Switch Monte Carlo
Use of multicanonical methods to surmount the free energy barrier between
coexisting phases has proved itself an effective and efficient means of studying
many varieties of first order phase transition. Systems to which the method
has been applied span a broad range from simple lattice spin models to com-
plex fluids [23]. Unfortunately, the approach is not effective in all situations;
a case in point is the freezing of a simple fluid.
The particular difficulties presented by the freezing transition stem from

the distinctive symmetries of the coexisting fluid (F) and crystalline solid



248 Nigel Wilding and David P. Landau

(CS) phases. In a multicanonical simulation the natural inter-phase route
traverses mixed phase (interfacial) states. Such states are kinetically prob-
lematic in the F-CS transition because the crystal that forms from the fluid
is (one finds) often extensively defect-ridden. These defects do not normally
anneal out on accessible simulation time-scales and can cause the system to
become trapped in states from which it cannot escape.
In view of this problem, computational studies for the freezing transition

have, to date, relied primarily on indirect approaches, specifically Thermo-
dynamic Integration [24,20]. Here, instead of linking the two phases directly,
the free energy of each phase is computed separately for states of a range of
densities, using integration techniques, which connect their thermodynamic
properties with those of known reference states. The two branches of the free
energy are then matched to determine the coexistence parameters. Thermo-
dynamic integration can be computationally laborious because of the need to
perform many simulations at different values of the model parameters defin-
ing the integration path. Additionally the integration path may encounter
singularities in the form of other first order phase transitions.
In view of these difficulties, a new MC simulation approach to first order

transition has recently been proposed [25,26]. The method, known as Phase
Switch Monte Carlo (PSMC), was originally developed as a means of comput-
ing free energy differences between distinct crystalline structures, where inter-
facial states are computationally problematic. It has recently been extended
to allow the freezing transition to be tackled. In outline, the new method [26]
samples the disjoint configuration spaces of two coexisting phases within a
single simulation. At its heart is a global coordinate transformation or “phase
switch” (implemented as a MC move) which directly maps one pure phase
onto the other. Biased sampling methods are employed to enhance the prob-
ability of certain “gateway” states in each phase from which the switch can
be successfully launched (cf. Fig. 8.9). The method permits direct determi-
nation of equilibrium coexistence-point parameters and prescribes statistical
uncertainties transparently.

Phase B

m

Phase A

Fig. 8.9. Schematic illustration of phase switch method.
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To illustrate the method we consider the freezing transition of hard spheres
simulated within a constant-NpT simulation ensemble [20] with periodic
boundary conditions. The configurational weight of a phase may be written
as

Zγ(N, p) =
∫ ∞

0
dV e−pV Zγ(N,V ) (8.21)

where N is the particle number, V the system volume and p the reduced
pressure [27]. γ (CS or F) labels the phase, while

Zγ(N,V ) =
1
N !

N∏

i=1

∫

V,γ

drie
−E({r}) . (8.22)

Here E is the hard sphere configurational energy [27], while the factor of
(N !)−1 corrects for indistinguishability. The γ-label on the integral stands
for some configurational constraint that picks out configurations {r} that ‘be-
long’ to phase γ. In a MC simulation, this constraint is formulated implicitly
as follows. Let Rγ

1 . . .R
γ
N ≡ {R}γ denote some representative configuration

of phase γ; we shall refer to {R}γ as the reference configuration. Then the
constraint picks out those configurations which can be reached from {R}γ on
the simulation time-scale. This time-scale is presumed to be sufficiently long
to allow exploration of one phase, but still short compared to spontaneous
inter-phase traverses. Such a situation is realized if the freezing transition is
sufficiently strongly first order.
Let us now designate the reference sites {R}γ as the origins of the particle

coordinates via some arbitrary association between the N particles and the
N reference sites. The set of particle positions can then be written as

ri
γ = Ri

γ + ui ,

which serves to define the set of displacement vectors {u} (independent of
the phase label γ) linking each particle i to its associated reference site Ri.
The configurational energy follows accordingly as

Eγ({u}) ≡ E({Rγ + u}) .
We now examine the implications of the above formulation for the con-

figurational weights of the F and CS phases. In the case of the F -phase all
contributing configurations are reachable from any one and may simply write

ZF (N,V ) =
1
N !

N∏

i=1

∫

V,{R}F

duie
−EF ({u}) (8.23)

where {R}F is some specific but arbitrary fluid configuration, which can be
selected at random in the course of MC exploration of the fluid phase.
In the case of the CS phase we choose {R}CS to be the sites of a FCC lat-

tice (the stable crystalline phase of hard spheres [25]) having the appropriate
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scale. Here though, it should be recognized that in contrast to the F phase,
the MC simulation does not sample the complete CS configuration space.
This actually comprises a number of distinct mutually inaccessible fragments
corresponding essentially to the different permutations of particles amongst
lattice sites. In the absence of self diffusion, a Monte Carlo simulation of the
CS phase will visit (and thus count) only the states within the fragment in
which it is initiated. By symmetry each fragment should contribute equally
to the configurational weight. Hence the total configurational weight of the
CS phase is given by multiplying the contribution of one fragment by the
number of fragments. The number of such fragments is the number of distinct
permutations of N distinguishable particles amongst N fixed lattice sites in
a periodic system. This number is not N ! but (N − 1)! since certain permu-
tations are reachable from others via a global translation (permitted via the
boundary conditions) [26]. Thus we have

ZCS(N,V ) =
(N − 1)!
N !

N∏

i=1

∫

V,{R}CS

duie
−ECS({u})

=
1
N

N∏

i=1

∫

V,{R}CS

duie
−ECS({u}) , (8.24)

The relative free energies of the two phases is given via (8.13). Combining
this equation with (8.21), (8.23) and (8.24) we can write

Rf,cs =
P (F |N, p)
P (CS|N, p) =

ZF (N, p)
ZCS(N, p)

=

∫∞
0 dV e

−pV
∏N

i=1

∫
V,{R}F duie

−EF ({u})

(N − 1)! ∫∞0 dV e−pV
∏N

i=1

∫
V,{R}CS duie−ECS({u}) (8.25)

To determine RF,CS (Eq. 8.25), we require a MC procedure which visits
both solid and fluid regions of configuration space in a single run. The key
to achieving this is the observation that, by construction, the system may
be transformed between the CS and F reference states simply by switching
the representative vectors (RF

i
⇀↽ RCS

i ∀i). Hence, by continuity, any CS (F )
configuration ‘sufficiently close’ to the reference one will also transform to a F
(CS) state under this operation. This phase switch can itself be implemented
as a MC step, so that the phase label γ becomes a stochastic variable.
However, the set of configurations for which the MC switch will be ac-

cepted will in general constitute only a small fraction of the respective con-
figuration spaces. To ensure effective two-phase sampling the MC procedure
must be multicanonically biased to enhance appropriately the probabilities
with which these ‘gateway’ regions are visited. To that end we define an or-
der parameter designed to allow the system to be drawn into the gateway
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regions:

M =Mγ({u}) =
∑

i

{Oi[1− θ(ui − uc)] + Tiθ(ui − uc)} (8.26)

Here θ is the step function. Ti ≡ αui measures the length of a notional tether
connecting site i to its associated particle. Oi measures the overlap (between
particle i and its neighbors) which would be created by a phase switch. The
parameter α controls the relative importance of Ti and Oi; uc controls the
tether-length domain in which each contributes.
The equilibrium states of both phases are characterized by largeM values.

The ‘overlap’ term contributes in both phases: swapping the {R} vectors will
(in general) produce a configuration of the ‘other’ phase in which spheres
overlap. The ‘tether’ term contributes only in the F -phase (as we describe
below) where particles may drift arbitrarily far from the sites with which
they are nominally associated; the tethers provide the means to ‘pull’ the
fluid towards the reference sites. The gateway states are those for which
M = 0 i.e. for which a phase switch can be implemented without incurring
hard sphere overlaps.
The entire region of configuration space relevant to the problem can be

sampled in the extended ensemble defined by

Z̃(N, p, {η}) ≡
∑

γ

∫ ∞

0
dV

N∏

i

∫

γ

duie
−Hγ({u},V ) (8.27)

where

Hγ({u}, V ) = Eγ({u}) + pV + ηγ(M)− δγ,CS ln (N − 1)!
while {η} represents a set of weights associated with each of the set of M-
macrostates associated with each phase. These weights are customized to
sample the full range of M -space and to enhance the probabilities of the
M = 0 gateway states [28].
Simulations in this ensemble allows one to measure the joint probability

distribution P (M,V, γ|N, p, {η}). From this one can unfold the bias due to
the weights to infer the true equilibrium distribution P (M,V, γ|N, p). The
desired free energy difference between the two phases (Eq. 8.25) follows by
integrating over the contributions associated with each γ to give the a priori
probabilities of the respective phases. Additionally, histogram extrapolation
techniques (cf. Sect. 8.3.2.3) can be employed to determine the value ofRf,cs
at neighboring pressures, thereby permitting a very precise determination of
the coexistence pressure.
We now turn to the MC procedure required for exploration of the space

spanned by the configuration variables {u}, V and γ. It comprises four types
of configuration update, each of which is accepted with a probability defined
by a Metropolis rule [20] reflecting the associated change in the effective
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Hamiltonian H. The first two –particle position updates and volume updates
(implemented as dilations)– are effected in standard ways [20]. The third –like
the first two– also preserves the phase label; but it is novel. In this process,
we choose two sites at random (i and j say) and identify the corresponding
displacement vectors ui and uj . The candidate configuration is defined by
the replacements

ui → u′
i ≡ uj +Rj −Ri and uj → u′

j ≡ ui +Ri −Rj

This process can be thought of as an association update: the particle
initially associated with (‘tethered to’) site j is subsequently associated with
site i (and vice versa). It changes the representation of the configuration
(the coordinates {u}); but it leaves the physical configuration invariant. It is
only required in the fluid phase where particles diffuse far from the sites with
which they are initially associated and the associated tethers become large.
Association updates allow the tethers to respond efficiently to the influence of
the tether contribution to {η}. Finally, the ‘phase switch’ entails replacing one
set of representative vectors, {R}γ say, by the other, {R}γ′

, with the volumes
scaled appropriately and the displacement coordinates {u} held fixed. In the
switch, the volume is scaled by αv ≡ V̄ γ′

/V̄ γ where V̄ γ is the equilibrium
volume of phase γ.
Before the simulation is performed, values must be assigned to the pa-

rameters uc and α appearing in the definition of the order parameter (8.26).
There is some license in making this choice. We set uc = D/2 (the hard
sphere radius) which ensures that the overlap contribution to M ‘switches
on’ whenever a particle is closer to its reference site than to any other ref-
erence site. Such a choice avoids the possibility that the phase switch might
lead to a glassy configuration. The sole constraint on the assignment of the
parameter α is that it be set sufficiently large to ensure a smooth hand-over
between the tether contribution and overlap contribution to M . Satisfactory
results were found using the value α = 1.7. As an efficiency measure we chose
to keep one particle fixed at its representative site in each phase; this sup-
presses the global translation mode in the CS phase and eliminates the need
for association updates in this phase.
Simulations were performed using systems of N = 32, 108 and 256 par-

ticles. Suitable weights were obtained by iterative means using some of the
techniques described in ref. [28]. In Fig. 8.10 we show a typical portion of the
evolution of the preweighted order parameter M as a function of MC time.
For clarity of representation, states in the F phase are denoted by positive
values of M , while negative values correspond to CS phase states. We note
that the range of M values sampled in the CS phase is quite small because
particles are localized near their reference sites by the suppression of the
global translation mode. By contrast, much larger values of M are explored
in the CS phase because the particles can drift far from the reference site
to which they are associated. Nevertheless the whole range can be spanned
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Fig. 8.10. The MC time evolution of the order parameter M for the N = 256
system. Phase switches occur between M = 0 states. For further details, see text.

relatively quickly by virtue of the highly efficient associations updates which
permit large-scale changes in tether lengths.
The density distribution p(ρ) was obtained from the measured distribu-

tion p(M,V, γ|N, p, {η}) by marginalising with respect to the volume V and
unfolding the effect of the weights [22]. The results for the N = 256 sys-
tem in the vicinity of the coexistence pressure are shown in Fig. 8.11. The
distributions derive from histogram reweighting of simulation data obtained
at p = 11.18. Coexistence, identified by the equality of the area under each
peak, occurs for p = 11.23(3).
Figure 8.12 shows the coexistence pressure for our three system sizes

plotted as a function of the scaling variable 1/N . The associated uncertainties
σ[p] are given by σ[p] = σ[R]/(N | Δv |) where Δv = [V̄F − V̄CS ]/N and σ[R]
is the uncertainty in the measured ratio of the peak-weights, whose statistics
depends on the frequency of the inter-phase switch. The three points are
consistent with the presumed scaling form and the extrapolated prediction
(p = 11.49(9)) is, within error, in accord with [24] and [29] (see Fig. 8.12
inset).

8.3.2.5 First Order Transitions and Wang–Landau Sampling
A simple model system that exhibits first order transitions and serves as an
ideal testing ground for diverse algorithms is the 2-dimensional Q − state
Potts model on L × L square lattice with nearest-neighbor interactions and
periodic boundary conditions. The Hamiltonian for this model can be written
as:

H = −
∑

<ij>

δ(qi, qj) (8.28)
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Fig. 8.11. The distribution of the density of the system of N = 256 particles at
pressures (a) just below, (b) at and (c) just above coexistence for this N . The mean
single phase density averages are ρF = 0.934(3) and ρCS = 1.031(4) in accord with
the coexistence parameters reported in [29].

and q = 1, 2, ...Q. For Q = 10 the transition is strongly first order and long
time scales for tunneling between coexisting states pose severe problems for
standard methods. Wang-Landau sampling can be performed as for the Ising
model but integers are chosen randomly between [1 : Q] for possible new
Potts spin values. The maximum density of states generated in this way for
L = 200 is very close to 1040000!
A canonical distribution P (E, T ) can then be determined from

P (E, T ) = g(E)e−E/kBT (8.29)

From the simulational result for the density of states g(E), we can calculate
the canonical distribution and in Fig. 8.13, we show the resultant double
peaked canonical distribution [30], at the transition temperature Tc . Note
that the peaks of the distributions are normalized to 1 in this figure. The
valley between two peaks is quite deep, e.g. is 7 × 10−5 for L = 100. The
latent heat for this temperature driven first-order phase transition can be
estimated from the energy difference between the double peaks.
Because of the double peak structure at a first-order phase transition,

conventional Monte Carlo simulations are not efficient since an extremely
long time is required for the system to travel from one peak to the other in
energy space. With the algorithm proposed in this paper, all possible energy
levels are visited with equal probability, so it overcomes the tunneling barrier
between the coexisting phases in the conventional Monte Carlo simulations.
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Fig. 8.12. The coexistence pressure for systems of different N using (8.25) both
with (•) and without (◦) the 1/N prefactor in the CS configurational weight. The
solid line is a fit to the former; the dashed line is lower by ln N/[NΔv]. The inset
compares our extrapolated value with the results of others, with error bars shifted
for clarity.
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Fig. 8.13. Probability distribution for the Q = 10 Potts model at the finite lattice
“transition temperature”.

The histograms for L = 60, 80 and 100 are shown in the inset of the Fig. 8.13
which are very flat. The histogram in the figure is the overall histogram
defined by the total number of visits on each energy level for the random
walk.
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With this algorithm, if the system is not larger than 100×100, the random
walk on important energy regions (such as that which includes the two peaks
of the canonical distribution at Tc) can be carried out with a single processor
and will give an accurate density of states within about 107 visits per energy
level. However, for a larger system, we can use a parallelized algorithm by
performing random walks in different energy regions, each using a different
processor.
The histograms from individual random walks are shown in the inset of

Fig. 8.13 both for 100×100 and 200×200 lattices. In this case, we only require
that the histogram of the random walk in the corresponding energy segment
is sufficiently flat without regard to the relative flatness over the entire energy
range. In Fig. 8.13, the results for large lattices show clear double peaks for
the canonical distributions at temperatures Tc(L) = 0.70127 for L = 150
and Tc(L) = 0.701243 for L = 200. Considering the valley which we find for
L = 200 is as deep as 9× 10−10, we can understand why it is impossible for
conventional Monte Carlo algorithms to overcome the tunneling barrier with
available computational resources.
This approach allows the estimation of the transition temperature, and

the transition temperature extrapolated from the simulational data is con-
sistent with the exact solution for the infinite system. Results can also be
compared with existing numerical data such as estimates of transition tem-
peratures and double peak locations obtained with the multicanonical sim-
ulational method by Berg and Neuhaus [19] and the Multibondic cluster
algorithm by Janke and Kappler [31]. Wang-Landau sampling allowed calcu-
lation of the density of states up to 200 × 200 within 107 visits per energy
level to obtain a good estimate of the transition temperature and locations
of the double peaks. Using the multicanonical method and a finite scaling
guess for the density of states, Berg et. al. only obtained results for lattices
as large as 100 × 100 [19], and multibondic cluster algorithm data [31] were
not given for systems larger than 50× 50.

8.3.3 Systems with Complex Order

There are many systems in statistical physics that do not have simple ground-
states and conventional phase transitions, e.g. spin glasses [32] for which the
interactions between the magnetic moments produce frustration because of
structural disorder. One of the simplest theoretical models for such systems
is the Edwards-Anderson model [33] (EA model). For such systems analytical
methods provide limited information and, because of the rough energy land-
scape of such disordered systems, the relaxation times of the conventional
Monte Carlo simulations are very long. Thus, simulations can be performed
only on rather small systems, and many properties of spin glasses are still
left unclarified [35,36,37,38,39,40,41,42].
Using a random walk in energy space, we can estimate the ground state

energy and g(E) very easily. For spin glass systems it is also important to
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determine the order parameter which can be defined by [33]

qEA(T ) ≡ lim
t→∞ lim

N→∞
q(T, t), q(T, t) ≡ 〈

N∑

i=1

Si(0)Si(t)/N〉. (8.30)

Here, N = L3 is the total number of the spins in the system, L is the linear
size of the system, q(T, t) is the auto-correlation function, which depends on
the temperature T and the evolution time t, and q(T, 0) = 1. When t→∞,
q(T, t) becomes the order parameter of the spin glass. This parameter takes
the following values

qEA(T )

⎧
⎨

⎩

= 1 if T = 0
= 0 if T ≥ Tg

�= 0 if 0 < T < Tg
, (8.31)

Note that the value at T = 0 may differ from 1 if the ground state is highly
degenerate. It is more efficient to perform a random walk in a single system
than two replicas so an order parameter can be defined as

q ≡ 〈
N∑

i=1

S0
i Si/N〉. (8.32)

where {S0
i } is one ground state spin configuration and {Si} is any configura-

tion during the random walk. The behavior of q is essentially the same as the
order-parameter defined by the Edwards and Anderson [33]. (It is not quite
the order-parameter defined by Edwards and Anderson, but was used in the
early simulations [43,44].)
After a bond configuration is generated a one-dimensional random walk

in energy space is generated to find a spin configuration for the ground states.
Since the order-parameter is not directly related to the energy, to get a good
estimate of this quantity a two-dimensional random walk is required to obtain
the density of states G(E, q). (In this way barriers in parameter space, or
configuration space, may be overcome using the same rule for the 2D random
walk as for a 1D random walk in energy space.) From the density of states
G(E, q), all quantities may then be determined.
The probability distribution can be determined as for the Ising and Potts

models, and we show this in Fig. 8.14. At low temperature there are over
30 orders of magnitude difference in the probability for neighboring values of
the order parameter. Standard methods could not possibly access all states
with such large differences in probability.
The energy landscape is then given by:

U(q, T ) =

∑

E,q

EG(E, q)e−βE

∑

E,q

G(E, q)e−βE
(8.33)
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Fig. 8.14. Probability distributions for the Edwards-Anderson spin glass in three
dimensions.

This landscape is very rough at low temperatures and is not accessible by
standard Monte Carlo methods. (Even two decades after the model was pro-
posed, there is still some doubt as to the existence of a phase transition in
the 3d Ising spin glass [45]. Their simulational data can be described equally
well by a finite-temperature transition or by a T = 0 singularity of an un-
usual type. Kawashima and Young’s recent simulations could not rule out
the possibility of Tg = 0 [36]. As the temperature is reduced, the canonical
distribution and energy landscape become increasingly rough and it is almost
impossible for conventional Monte Carlo methods to overcome the barrier be-
tween local and global minima. It is possible to heat the system to increase
the possibility of escape from local minima by simulated annealing and sim-
ulated tempering [46] and parallel tempering methods [47,48], but it is still
very difficult to perform equilibrium simulations at low temperatures. Cross-
ings of the fourth order cumulant as a function of temperature at around
T = 1.2 suggest that there is a transition at this temperature, a conclusion
that is consistent with the finite size behavior of the order parameter.

8.3.4 “Dynamic” Behavior: Spin Dynamics
with Decompositions of Exponential Operators

Many magnetic systems have true dynamics that cannot be investigated by
stochastic simulations. Instead spin dynamics simulation methods can be used
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to integrate the coupled equations of motion that govern the time dependent
behavior. As an example we consider a model Hamiltonian for continuous de-
grees of freedom represented by a three-component spin Sk with fixed length
| Sk |= 1 for each lattice site k

H = −J
∑

<k,l>

(Sx
kS

x
l + S

y
kS

y
l + λS

z
kS

z
l )−D

∑

k

(Sz
k)

2
, (8.34)

where J is the exchange integral, < k, l > denotes a nearest-neighbor pair
of spins Sk, λ is an exchange anisotropy parameter, and D determines the
strength of a single-site or crystal field anisotropy. For λ = 1 and D = 0
(8.34) represents the classical isotropic Heisenberg ferromagnet or the cor-
responding antiferromagnet for J > 0 or J < 0, respectively. Of course,
realistic descriptions of specific magnetic materials may require additional
interactions, but we restrict ourselves to this simple Hamiltonian to describe
the essential features of modern spin dynamics methods. We shall see that
the excitations may occur at quite low frequencies and critical slowing down
appears near second order phase transitions when systems are examined in
this manner. Long time scales thus become problematic even though their
origins are quite different than for the problems considered earlier.
The dynamic properties of these spin systems are given by the solution

to the equations of motion [49]

d

dt
Sk =

∂Htot

∂Sk
× Sk (8.35)

that must be integrated numerically. Initial conditions are equilibrium con-
figurations generated by Monte-Carlo simulations. The dynamic structure
factor S(q, ω) can be measured by inelastic neutron scattering and is the
space-time Fourier transform of the spin-spin correlation function

Gα,β(rk − rl, t− t′) ≡ 〈Sα
k (t)S

β
l (t

′)〉, (8.36)

where α, β = x, y, z denote the spin component, rk and rl are lattice vectors,
and the average 〈. . . 〉 must be taken over a large number of independent
initial equilibrium configurations.
The most time consuming part of a spin dynamics simulation is the nu-

merical integration of (8.35). Consequently, the largest possible time step is
desirable; however, standard methods restrict the size of the time step if the
conservation laws of the dynamics are to be retained. Clearly | Sk | for each
lattice site k and the total energy are to be conserved, and specific symme-
tries of the Hamiltonian impose additional conservation laws. Conservation
of spin length and energy is important because the condition | Sk |= 1 is a
major part of the definition of the model and the energy of a configuration
determines its statistical weight.
Predictor-corrector methods provide a very general tool for the numerical

integration of initial value problems like (8.35) with an equilibrium configu-
ration as the initial value. Schematically (8.35) can be written as ẏ = f(y)
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with the initial condition y(0) = y0. The predictor step is given, e.g., by the
explicit Adams-Bashforth four-step method [50]

y(t+ δt) = y(t) (8.37)

+
δt

24
[55f(y(t))− 59f(y(t− δt)) + 37f(y(t− 2δt))− 9f(y(t− 3δt))]

which has a local truncation error of the order (δt)5. The corrector step is one
iteration of some implicit method, e.g. an Adams-Moulton three-step method
[50]

y(t+ δt) = y(t) (8.38)

+
δt

24
[9f(y(t+ δt)) + 19f(y(t))− 5f(y(t− δt)) + f(y(t− 2δt))]

which also has a local truncation error of order (δt)5.
For D = 0, λ = 0 the predictor-corrector method conserves the magneti-

zation to within machine accuracy, and its implementation is independent of
the special structure of the right-hand side of the equation of motion. Other
conservation laws are only obeyed to within the accuracy set by the trunca-
tion error of the method. In practice, this limits the time step to typically
δt = 0.01/J [50].
Recently, a new method has been developed that relies on the decomposi-

tion of exponential operators. The motion due to (8.35) may be visualized as
a Larmor precession of the spin S around an effective axis Ω which is itself
time dependent. For the simple case D = 0, but arbitrary values of λ, the
evaluation of the right-hand side of (8.35) is best performed by decomposing
the lattice into two sub-lattices such that a spin on one sub-lattice performs a
Larmor precession in a local field Ω of neighbor spins which are all located on
the other sub-lattice. The basic idea of the algorithm is to perform a rotation
of a spin about its local field Ω by an angle α =| Ω | δt, rather to integrate
(8.35) by some standard method. This procedure conserves the spin length
to within machine accuracy. Exploiting a sub-lattice decomposition of (8.35)
also ensures energy conservation. If the two sub-lattices are denoted by A
and B, respectively, (8.35) has the form

d

dt
Sk∈A = ΩB{S} × Sk∈A ,

d

dt
Sk∈B = ΩA{S} × Sk∈B, (8.39)

where ΩA{S} and ΩB{S} denote the local fields produced by the spins on
sub-latticeA and B, respectively. Either of the equations in (8.39) reduces to a
linear system of differential equations if the spins on the other sub-lattice are
kept fixed. The spins Sk∈A are rotated for fixed values of Sk∈B and vice versa.
The energy is exactly conserved during this alternating update scheme. Note,
that each sub-lattice rotation is performed with the actual values of the spins
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on the other sub-lattice, so that only one copy of the spin configuration is
kept in memory at any time. The magnetization will not be conserved during
the rotation operations; moreover, the two alternating rotation operations do
not commute so a closer examination of the sub-lattice decomposition of the
spin rotation is required.
We again represent a full configuration by a vector y which is now decom-

posed into two “sub-lattices” yA and yB, i.e. y = (yA, yB). The cross products
in (8.39) can expressed by matrices A and B which are the infinitesimal gen-
erators of the rotation of the spin configuration yA on sub-lattice A at fixed
yB and of the spin configuration yB on sub-lattice B at fixed yA, respectively.
The update of the configuration y from time t to t + δt is then determined
by an exponential (matrix) operator i.e.

y(t+ δt) = e(A+B)δty(t). (8.40)

Although the exponential operator in (8.40) rotates each spin of the con-
figuration, it has no simple explicit form because the rotation axis for each
spin depends on the configuration itself. However, the operators eAδt and
eBδt which rotate yA at fixed yB and yB at fixed yA, respectively, do have
explicit forms. For example, for λ = 1 and D = 0

ΩA[{S}] = −J
∑

l=NN(k)

Sl ≡ Ωk, (8.41)

where the sum is over nearest neighbors of k (which belong to yB). Of course,
(8.41) can be generalized for λ �= 1.
The alternating update scheme for the integration of (8.39), i.e., (8.35)

now amounts to the replacement e(A+B)δt → eAδteBδt in (8.40), which is only
correct up to terms of the order (δt)2 [51]. The magnetization will therefore
only be conserved up to terms of the order δt (global truncation error), which
is insufficient for practical purposes. The remedy is to use higher order Suzuki-
Trotter decompositions of the exponential operator in (8.40) to increase the
local truncation error of the algorithm and thus improve the magnetization
conservation. The simplest possible improvement is given by the second order
decomposition [51]

e(A+B)δt = eAδt/2eBδteAδt/2 +O(δt3), (8.42)

which will be used for comparison with the predictor-corrector method. Note,
that (8.42) is equivalent to the midpoint integration method applied to (8.39).
One possible fourth order decomposition [51] is

e(A+B)δt =
5∏

i=1

epiAδt/2epiBδtepiAδt/2 +O(δt5) (8.43)

with the parameters

p1 = p2 = p4 = p5 ≡ p = 1/(4− 41/3) and p3 = 1− 4p. (8.44)
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Equations (8.42) and (8.43) show the analogy to symplectic integrators ob-
tained from the Liouville operator formalism for Molecular Dynamics simula-
tions. [50] The second order decomposition given by (8.42) is just equivalent
to the velocity Verlet algorithm for Molecular Dynamics simulations which
is also equivalent to the leapfrog algorithm.
The extra computational effort needed for the decomposition method can

be compensated for by using larger time steps. The evaluation of the trigono-
metric functions that appear in the expressions Sk(t+ δt) can also be readily
approximated to reduce cpu time needed. In contrast to the predictor - cor-
rector method, conservation of magnetization is only observed within the
truncation error of the decomposition method, because according to (8.42)
and (8.43) the sublattices A and B are no longer strictly equivalent.
This method can also be used to study the case D �= 0 in (8.34). For a

spin in sublattice A the equation of motion is
d

dt
Sk∈A = ΩB[{S}]× Sk∈A − 2DSz

k∈Aez × Sk∈A, (8.45)

where ez is the unit vector in the z-direction, and spins in sublattice B obey
an equation of the same form. Now the equation of motion for each individual
spin on each sublattice is nonlinear. For the sublattice decomposition of the
spin rotation in the isotropic case discussed above the requirement for energy
conservation in the presence of a single site anisotropy is

Ωk · Sk(t+ δt)−D [Sz
k(t+ δt)]

2 = Ωk · Sk(t)−D [Sz
k(t)]

2 (8.46)

for k ∈ A and k ∈ B, where Ωk is given by (8.41). In order to perform a
rotation operation an effective rotation axis must be identified. This can be
done by rewriting (8.46) in the form Ω̃k · (Sk(t+ δt)− Sk(t)) = 0, where Ω̃k

is given by
Ω̃k = Ωk −D (0, 0, Sz

k(t) + S
z
k(t+ δt)) , (8.47)

i.e., in order to perform the rotation Sz
k at the future time t + δt must be

known in advance. This problem can only be solved iteratively and the speed
of the integration algorithm is correspondingly reduced.
An evaluation of the different integration methods depends upon the ac-

curacy within which the conservation laws are fulfilled. For the isotropic case,
D = 0, the implementation of (8.42) and (8.43) is straightforward. The energy
e(t) for the predictor-corrector method increases linearly with time whereas
the decomposition methods both yield a constant value for e(t) that fluc-
tuate but increase quite slowly with time. The predictor-corrector method
conserves m(t) exactly, whereas the second order decomposition produces
fluctuations of m(t) on all time scales, even for times greater than 2000/J .
Somewhat remarkably, the fourth order decomposition with δt = 0.2/J gives
a substantially better magnetization conservation than the second order de-
composition with δt = 0.04/J . The net increase in speed is eightfold for both
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decomposition methods, but if the overall quality of the magnetization con-
servation is also taken into account, there is a clear advantage for the fourth
order decomposition according to (8.43) for the isotropic case D = 0.
In the strongly anisotropic case, e.g. D = J , the predictor-corrector

method can be applied as before, but the decomposition scheme needs mod-
ification because the spin rotation axis depends on the spin value Sz

k at the
future time t + δt (see (8.47)). This gives rise to a self consistency problem
which can be solved iteratively, where the quality of the energy conservation
depends on the number of iterations performed.
If priority is placed on overall energy conservation and speed, the sec-

ond order decomposition has some advantages over the predictor-corrector
method. If priority is put on energy conservation alone, the fourth order de-
composition shows the best performance, but it is only slightly faster than
the predictor-corrector method.
To summarize, the advantages of the predictor-corrector method are its

versatility and its ability to conserve the magnetization exactly. The de-
composition method is less general than the predictor-corrector method. for
example, crystal field anisotropies leave the performance of the predictor-
corrector method almost unaffected, whereas the decomposition method is
reduced in speed. The greatest advantage of the decomposition method is its
ability to handle large time steps and conserve spin length exactly. In the
absence of anisotropies it also conserves the energy exactly and it maintains
reversibility. For anisotropic Hamiltonians energy conservation and reversibil-
ity can be obtained to a high accuracy using iterative schemes but exact mag-
netization conservation is lost. The time steps typically used are much bigger
than for the predictor-corrector method so that much longer timescales can
be accessed.

8.4 Summary and Outlook

In this article we have seen that Monte Carlo studies of phase transitions
using Metropolis sampling and standard Boltzmann importance sampling
are often inadequate for the study of phase transitions. Severe difficulties
are encountered in the form of a huge disparity between typically accessible
simulation timescales and those on which the phenomena of interest occur.
The manner in which this time scale ”gap” is manifest differs qualitatively

between continuous and first order transitions. In the continuous case, the di-
vergent correlation length causes critical slowing down, resulting in extended
correlation times for simple local update algorithms. In the case of some spin
models, this problem can be largely alleviated via the use of collective coordi-
nate (”cluster”) updating schemes. These focus the computational effort on
relaxing the large scale configurational structure, the temporal persistence of
which constitutes the bottleneck for phase space evolution.
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In the context of first order phase transitions and frustrated systems
such as spin glasses, the timescale gap is manifest in the form of long-lived
metastable states which hinder the sampling of all the regions of phase space
important for measurements of free energies. We have seen that in terms of
the structure of the probability distribution of some order parameter, one
finds two or more sharp maxima separated by deep minima. At first order
transitions, the maxima are associated with pure phase states while the min-
ima are associated with mixed-phase (interfacial) configurations. Owing to
the high free energy of interfacial states that separates the pure phase regions,
the frequency of transitions between the coexisting pure phases is suppressed.
A number of approaches for dealing with this problem were discussed. It was
seen that in some models the use of non-Boltzmann sampling such as Multi-
canonical Monte Carlo or “Wang-Landau” sampling can be used to bridge the
probability valley between the maxima, or even calculate the entire density of
states over some region of interest. In a number of cases, however (specifically
those in which one or more of the phases is crystalline), traversing interfacial
states is not kinetically tolerable because the system gets trapped in defect
ridden configurations. In such cases, we detailed how one can employ the
methods of Phase Switch MC to perform a global coordinate transformation
that maps pure phase states of one phase onto those of another.
As regards the general outlook for bridging timescale gaps in problems

in volving phase transitions, MC (in some form or another) looks likely to
remain the method of choice for a great many problems. Its strength derives
from the flexibility it offers in allowing the simulator to engineer large scale
configurational changes in a single step, unhindered by the inherently slow
physical dynamics. It can also be used in combination with biased sampling to
visit regions of phase space of intrinsically low probability, thereby facilitating
exploitation of short cuts through phase space. In the coming years such
methods are likely to be further refined, allowing progress on a number of
previously intractable problems. One area in which the present authors would
like to see progress is the extension of cluster algorithms (currently only
applicable to spin systems) to allow more efficient simulation of continuous
phase transitions in off-lattice models such as fluids. Doubtless too, it would
be of interest to combine the new methods for studying phase transition (such
as PSMC) with techniques allowing first principles calculation of electronic
structure, thereby facilitating accurate study of phase transitions in models
of real substances.
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Heidelberg, 2000).

49. D. P. Landau and M. Krech, J. Phys.: Condens. Matter 11, R179 (1999).
50. M. Krech, A. Bunker, and D. P. Landau, Comp. Phys. Commun. 111, 1 (1999).
51. M. Suzuki and K. Umeno in: Computer Simulation Studies in Condensed Matter

Physics VI, eds. D. P. Landau, K. K. Mon, and H.-B. Schüttler (Springer,
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Abstract. Because of its underlying basis in kinetic theory, we discuss the advan-
tages of using the lattice-Boltzmann equation (LBE) as a component in multi-scale
simulations. As an example of upward coupling, we examine how the simple problem
of the dynamics of tracers can be studied within the LBE framework. We describe
how, by utilizing the kinetic view of the model, very efficient techniques can be
developed to study this problem. For the specific example of hydrodynamic disper-
sion (the extra spreading of the tracer due to fluid flow) we apply the methods to a
problem where there is an analytic value to compare with, namely flow in a tube,
and a more complex system, namely a close packed cubic array of spheres. For the
former we show that the method accurately reproduces known results, even with a
crude representation of the tube. For the latter we show that the dispersion coeffi-
cient asymptotes on a time-scale determined by molecular diffusion. This behaviour
is not what is expected for a random medium. Our results thus illustrate that a
periodic system is too crude an approximation, as far as dispersion in random me-
dia is concerned. Nonetheless, our values for the dispersion coefficient agree nicely
with experimental results on periodic systems.

9.1 Introduction

The dynamics of multicomponent/multiphase flows plays a major role in
many real life-applications, ranging from engineering, material science, envi-
ronmental and life sciences. It also represents a standing challenge for math-
ematical and numerical methods, due the concurrent and simultaneous inter-
action of multiple space-time scales. Many numerical methods are available to
deal with these complexities including Eulerian and Lagrangian grid methods,
as well as a variety of particle methods. However, it is increasingly evident
that only a multi-scale approach can handle the type of complexities encoun-
tered in modern, interdisciplinary, high-tech applications. By multi-scale we
mean that different physical processes might be handled with different tech-
niques, each best suited to deal with the most relevant scales associated
with the given process. For instance, fluid flow could be handled by a grid
method, while diffusion and dispersion phenomena could be handled by, say,
a Lagrangian passive tracer technique. Many options are available, and the
key to success is to develop flexible and robust interfaces orchestrating the
different techniques into seamless computational procedures.

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 267–285, 2002.
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Very advanced multi-scale (or multiphysics) applications have been de-
veloped in the context of brittle fracture dynamics, involving a three-level
procedure based upon the use of Finite Elements in the region far from the
crack, a molecular dynamics treatment of atomic motion near the crack and
a quantum mechanical description of bonding in the crack tip’s immediate
neighborhood [1]. Such type of complex multiphysics applications require in-
genious and careful interfaces in the so-called “hand-shaking” regions where
boundary information has to be exchanged.
An appealing alternative is to explore methods which can host multiple

physical levels, say atomistic, kinetic and fluid, within a single mathematical
framework, the obvious advantage being of doing away with the aforemen-
tioned hand-shaking interfaces [2].
The most natural conceptual framework to develop this program is pro-

vided by kinetic theory, which formulates three-dimensional atomistic N -
body dynamics in terms of fluid-motion in a 6N -dimensional phase space.
This approach is traditionally doomed by the infamous curse of dimension-
ality. Even at the lowest level, N = 1, of one-body kinetic equations, such
as Vlasov or Boltzmann, we are left with six-dimensional fluids, beyond the
capabilities of any conventional grid method. Until recently, the only way out
of this dimensional curse was offered by stochastic particle methods, such as
Bird’s Direct Simulation Monte Carlo [4]. The common tenet behind this
being that grid discretization of a six dimensional space involves of the order
of N6

g degrees of freedom, Ng being the number of discrete points per linear
dimension.
In the last decade however, this conclusion has been successfully chal-

lenged, with the realization that in many instances the 6-dimensional phase
space does not need to be sampled (or discretized) uniformly. In particular,
velocity (momentum) degrees of freedom prove amazingly nice to us, in that
discretization over a handful of discrete speeds (between ten and twenty) is
sufficient to capture the complexities of most hydrodynamic phenomena. The
resulting discrete kinetic equation, known as the Lattice Boltzmann equation,
has indeed met with remarkable success for the numerical simulation of a va-
riety of complex hydrodynamic phenomena, ranging from multiphase flows
in grossly irregular geometries, up to fully developed turbulent flows of in-
dustrial interest [5,6]. The critical reader might object that there is little
surprise that ten or twenty discrete speeds can capture hydrodynamics, since
the latter is known to be described by a few low-order kinetic moments, such
as the fluid density, speed and temperature.
There are at least two good reasons why LBE survives this plausible crit-

icism. First, the mathematical structure of LBE makes it much simpler to
simulate on a serial computer, and more efficiently on parallel ones, as com-
pared to the non-linear partial differential equations of fluid dynamics. Sec-
ond, and more importantly for multiscale applications, judicious extensions
of the plain LBE scheme, including generalized equilibria and/or effective
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potentials, may take LBE in the mesoscopic territory [7] where continuum
equations are generally ill-posed, and often just not known altogether!
Summarizing, LBE is easily coupled “upwards” to macroscopic grid meth-

ods since smooth kinetic information leaves on a discrete grid of macroscopic
size. It is also easily coupled “downwards” with atomistic methods whenever
the underlying microscopic physics can be lumped into generalized equilib-
ria and/or effective potentials. Either way, no “handshaking” regions are
required, which makes LBE-based multiscale applications particularly ap-
pealing.
In this work we shall be concerned with a specific instance of “upward”

coupling, namely how to combine LBE-based fluid flow with the dynamics of
passive/active tracers. This problem has numerous applications, combustion
and polymer flows being just two relevant ones.

9.2 LBE Schemes with Tracer Dynamics

As of today, there are at least four classes of methods coupling LBE with
tracer dynamics:

• Extra-dimensional methods
• Grid-grid methods
• Hybrid grid-particle methods
• Go-with-the-flow (GWF) kinetic methods

9.2.1 Extra-dimensional Methods

Extra-dimensional methods, the earliest ones, are based on the simple obser-
vation that a LBE flow in 4 dimensions, x, y, z, w with the fourth dimension
w quenched, is formally equivalent to a 3-dimensional flow with a passive
scalar. Here, quenching means that any dependence on w is erased by col-
lapsing the fourth dimension into a single layer of cells [3]. This method
enjoyed some popularity in the early days of Lattice Boltzmann research,
when no three-dimensional LBE lattice ensuring correct hydrodynamics was
known, so that three-dimensional hydrodynamics was to be simulated in four
dimensions anyway. As of today, extra-dimensional methods have lost most
of their appeal since LBE flows can be simulated in three-dimensions without
any problem.

9.2.2 Hybrid Grid–Grid

These are pragmatic methods in which the tracer equation is handled by any
of the well known grid methods, such as finite differences, volumes or ele-
ments. In particular, LBE has been coupled to traditional Patankar’s finite
volumes for the study of catalytic flows [9]. This option has the merit of sim-
plicity, but may introduce a relatively high amount of numerical diffusion. As
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a result, it is practical for relatively low Reynolds flows, but it cannot be rec-
ommended for applications where a stringent control on numerical viscosity
is a must (say, pollutants in turbulent flows, thin flame propagation).

9.2.3 Hybrid Grid–Particle

Since the tracer obeys a convection-diffusion (Fokker-Planck) equation, it can
clearly be handled with on or off-lattice stochastic particle methods. These
are generally computationally more expensive than grid methods, but provide
a potential advantage whenever sharp features in the tracer distribution need
to be tracked by the simulation. Resolving such features with grid methods
is generally quite expensive (static grids) or cumbersome (dynamic grids).
Off-lattice particles are attractive because they provide a natural form of
adaptivity.

9.2.4 Go-with-the-Flow Kinetic Methods

By ”go-with-the-flow” (GWF) methods we imply on-lattice schemes in which
the populations describing the tracer are moved with transition rates which
depend on the local flow conditions. These methods are particularly appealing
because, 1) they are tightly coupled to LBE (in particular, they live on the
same grid), 2) they can minimize numerical diffusion without taxing computer
storage.
To date, we are aware of two implementations, by Lowe and Frenkel [10],

and Succi et al. [11]. In the former, the transition rates at each given lattice
site are computed by using the actual values of the discrete distribution at
that site. In the latter, the same rates are computed based on the local flow
fields, plus additional correction terms which permit one to virtually cancel
numerical viscosity (actually, to push it to fourth-order in grid spacing). The
resulting scheme is therefore suitable to high-Reynolds applications, and it
is currently used also for dynamic turbulence models [12]. Since details of
this scheme have been published elsewhere, in the following we focus on the
Lowe-Frenkel implementation.

9.3 Hydrodynamic Dispersion

The simplest example of a problem that can be tackled with a “go with
the flow” approach is that of hydrodynamic dispersion. Although there are
more complex applications of the same kind of approach [13,14], this problem
is useful for illustrative purposes. It emphasises that a lot can be achieved
by considering the kinetic - particle level - basis of the LBE, rather than
regarding it simply as a discretization of the Navier-Stokes equations.
The phenomenon of hydrodynamic dispersion has been known at least

since Slichter [15]. It is the additional spreading of a passive component dis-
persed in a solvent flowing through a porous medium. This extra spreading
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Fig. 9.1. Hydrodynamic dispersion. A fluid (not shown) is flowing, from top to bot-
tom, between randomly placed disks. A constant uniform concentration of tracer
is introduced at the top and is transported through the system. The pictures cor-
respond to progressive increments of time, starting from top left and proceeding
clockwise. For this simulation molecular diffusion is small. In the absence of hydro-
dynamic dispersion one would simply expect a narrow front moving at a uniform
velocity through the system. Note how the tracer is spread by the fluctuations of
the flow velocity about the mean.

is due to fluctuations in the local flow velocity about the mean (see Fig. 9.1).
Thus, the diffusion coefficient (calculated in a co-moving frame of reference)
for a flowing fluid, D, can substantially exceed the molecular diffusion coeffi-
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cient, D0. The latter characterizes transport in the stationary fluid. Following
convention, we will refer to the former as the dispersion coefficient. While
conceptually simple, this is by no means a trivial or irrelevant problem. It
is of practical importance, in that it is closely related to the spreading of
pollutants in groundwater. It is also of fundamental interest in that, as we
shall see, it depends very strongly on the characteristics of the flow velocity
field [16].

9.3.1 The Moment Propagation Method

A useful starting point for studying scalar transport within the framework of
the the lattice Boltzmann method, is to return to the lattice gas models from
which the model originally derives. One of the successful applications of lat-
tice gases was in studying transport phenomena in fluids. Techniques such as
the moment propagation method [17], developed within this framework, al-
lowed many subtle aspects of theoretical predictions for transport processes
in fluids to be tested to an unprecedented degree of accuracy [18,19]. The
idea behind the method was to define the probability that a particle, located
at a lattice site r, is travelling with a particular (discrete) velocity ci after
a collision at time t, as ni(r, t)/ρ(r, t). Here ni(r, t) is the boolean variable
defining whether there is or is not such a particle with the required velocity,
and ρ(r, t) the total number of particles located at site r. Given this defini-
tion, the moment propagation method provided a means, from some initial
distribution, of simultaneously summing the probabilities of all trajectories
ending at a given site at a given time. Furthermore, the method enabled one
not just to calculate probabilities, but to calculate functions that can be writ-
ten in the form of weighted averages of some initial and current property of
the trajectories. The usefulness of this will become apparent when we discuss
calculating the velocity autocorrelation function (VACF) using the method.
If one can calculate these functions for all possible trajectories in one go,
it is clear that the statistical error decreases with increasing time, simply
because more trajectories are sampled. For correlation functions, which gen-
erally start from some initial value (defined by an equilibrium property) then
decay to zero, this is very useful. It allows one to study this decay for longer
periods, without the signal disappearing into the noise.
If we now turn to the lattice-Boltzmann model, then in the same spirit

we can treat tagged particle motion by considering that the probability a
particle located at a given site has some post-collisional velocity, ci, is

pi(r, t) =
fi(r, t)
ρ(r, t)

(9.1)

where fi(r, t) is the single particle distribution function for discrete velocity
i. This is the central quantity one computes for the lattice Boltzmann equa-
tion [6], and quantities such as the density, ρ(r, t), and momentum density,
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j(r, t), are simply moments of this distribution

ρ(r, t) =
b∑

i=1

fi(r, t)

j =
b∑

i=1

fi(r, t)ci = ρ(r, t)u(r, t) (9.2)

Here b is the number of discrete velocities and u(r, t) the flow velocity.
Let us now suppose we wish to calculate one component (taken as αβ) of

the VACF, Cαβ(t). This is defined as

Cαβ(t) =< ciα(0)ciβ(t) > (9.3)

where the average is taken over all particles and all trajectories. Suppose
further that we know the quantity Pα(r, t), which we define as the sum of
the probabilities of all trajectories ending at r at time t, weighted by the α
component of the initial velocity of the trajectory. Following our definition
above (equation (9.1)), we can write down the time evolution of Pα(r, t+1)

Pα(r, t+ 1) =
∑

i �=ib

Pα(r− ci, t)fi(r− ci, t)
ρ(r− ci, t)

+
∑

i=ib

Pα(r, t)fi(r, t)
ρ(r, t)

(9.4)

where we have defined a time step of unity. The first summation is for links
(connections between sites) that do not intersect a solid boundary, the second
(i = ib) for links that do. It is implicit here that the “bounce back at half
time-step” rule is being used to apply stick boundary conditions [23]. After
the site collisions (integer times), the contribution to the VACF arising from
all trajectories ending at r, Cr

αβ(r, t), is the product of Pα(r, t) with the
probability that a particle currently has a given β component of velocity,

Cr
αβ(r, t) = Pα(r, t)

∑

i,ib

fi(r, t)
ρ(r, t)

ciβ = Pα(r, t)uβ(r, t) (9.5)

the summation being in fact equal to the β component of the local flow
velocity, uβ(r, t). The full VACF can the be obtained simply by summing the
contribution from all nodes and dividing by the the number of particles in
the system N =

∑
r,i fi = Nρ0,

Cαβ(t) =
1
N

∑

r

Cr
αβ(r, t) (9.6)

Care needs to be taken if solid boundaries are present because from half
integer times onwards (i.e. after the boundary collisions have changed the
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velocities), (9.5) becomes

Cr
αβ(r, t+ 1/2) = Pα(r, t)

⎛

⎝
∑

i �=ib

fi(r, t)
ρ(r, t)

ciβ −
∑

i=ib

fi(r, t)
ρ(r, t)

ciβ

⎞

⎠

= Pα(r, t)u
1/2
β (r, t) (9.7)

As they stand, these equations are no use because we do not know Pα(r, t).
However, we can calculate it explicitly for some initial time. Taking our time
origin just after the node collisions (+), we have

P+
α (r, 1) =

∑

i �=ib

fi(r− ci, 0)ciα −
∑

i=ib

fi(r, 0)ciα (9.8)

and we can explicitly calculate

C+
αβ(0) =

1
N

∑

r,i

ciαciβ (9.9)

C+
αβ(1/2) = C

+
αβ(0)−

2
N

∑

r,i=ib

ciαciβ

Taking our time origin just after the boundary collisions (−) on the other
hand, gives the same value got Cαβ(0), but an explicit value of Pα for half a
time-step

P−
α (r, 1/2) =

∑

i �=ib

fi(r− ci, 0)ciα +
∑

i=ib

fi(r, 0)ciα (9.10)

That is, because the velocities of particles on boundary links are reversed
they contribute to the VACF in the opposite sense compared to the (+)
case. We are now in a position to calculate the full VACF, averaged over all
possible trajectories of the tagged particles. For the (+) time origin we use
(9.9) to calculate C+(0) and C+(1/2), (9.8) then specifies Pα at t = 1, which
can be propagated in time according to (9.4). Once Pα is known, the VACF,
C+(t) can then be calculated at integer and half integer times using (9.5) and
(9.7) respectively. Similarly, for the (−) time origin, Pα is specified explicitly
from (9.10), propagated in time according to (9.4), then the VACF, C−(t)
calculated at integer time from (9.7) and at half integer times from (9.5).
The true VACF is then obtained by averaging over the two time origins

Cαβ(t) =
1
2

(
C+

αβ(t) + C
−
αβ(t)

)
(9.11)

The dispersion coefficient, Dαβ , is related to the time integral of the VACF
via the Green-Kubo relation

Dαβ =
∫ ∞

0
Cαβ(t)− Cαβ(∞)dt (9.12)
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The second term is required because if there is flow there is nett momentum
in the system. The VACF, as normally defined, will not decay to zero, but to
some constant value (this will be discussed in more detail later). This simply
reflects the fact that the mean square displacement will increase quadrati-
cally in time, because of the nett drift, rather than linearly, as expected for
a diffusive process. This problem is addressed by simply transforming into a
co-moving frame of reference. To do so, in (9.12) we simply subtract off the
infinite time value of the normal VACF, Cα(∞). Allowing for the discrete
time-steps used in the lattice-Boltzmann model, the integral becomes a sum-
mation, so we arrive at the following expression for the dispersion coefficient

Dαβ =
1
4
(Cαβ(0)− Cαβ(∞))+ 14

∞∑

i=1

C+
αβ(i/2)+C

−
αβ(i/2)−Cαβ(∞) (9.13)

It should be noted that although this procedure, of calculating the VACF
at both integer and half integer times and averaging over the two time origins,
may seem unnecessarily involved, it is important. To see this, let us consider
the motion of tracer particles in a system where there is no flow (uα(r) = 0),
but there are solid obstacles present. The presence of the obstacles will hinder
the motion of the tracer, reducing the diffusion coefficient, D, relative to its
value in the absence of the obstacles. Thus, the time integral of the VACF
must be reduced by the presence of the obstacles,D0. However, examining the
moment propagation equations above, since uα(r) = 0, (9.5) for the VACF at
integer times will always give a VACF of zero whether the objects are present
or not. This contradicts our statement that the obstacle should suppress the
diffusion coefficient because their presence does not change this contribution
to the VACF. On the other hand, for links adjacent to the surface of the
obstacle u1/2

α (r) is not generally zero so a contribution arises to the VACF at
the surface of the obstacles at half integer times. It is this contribution that
gives a negative region in the VACF and the corresponding reduction in the
diffusion coefficient. Similarly, the value we specify for Pα will always be zero
for the (−) time origin, but non zero for the (+) time origin. Thus the (−)
time origin makes no contribution, reducing the true VACF by a factor of 2
(equation (9.11)). This factor is nonetheless necessary to obtain the correct
value for the diffusion coefficient. As a quantitative example, we consider a
random packing of spheres, the spheres occupying 58% of the available space.
Following the procedure outlined, taking all contributions to the VACF into
account, we obtain a value D/D0 = 0.55. This is in good agreement with
experimental values for random packings of beads [10].
This in essence is how we can use the moment propagation method within

the framework of the lattice-Boltzmann model. There are however a few ad-
ditional considerations worthy of note which we will now consider.
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9.3.2 Galilean Invariance

Defining “local molecular diffusion” as being characterized by the behaviour
at a single lattice site over one time-step, the summation over i in (9.9) is
related to the corresponding element of the momentum flux tensor Π, so

Cαβ(0) =
Παβ

ρ(r)
(9.14)

From (9.9), we also see that, in the absence of boundary links (or in the
”thermodynamic limit” where the proportion of boundary links becomes neg-
ligible) we also have Cαβ(0) = C+

αβ(1/2). If the fluid is at rest then we also
have Cαβ(t > 1) = 0. It follows from (9.12) that the local diffusion coefficient
is

Dαβ =
Παβ(r)
2ρ(r)

(9.15)

Limiting our attentions to the diagonal terms (αα), the equilibrium momen-
tum flux tensor is [23]

Παα = c2sρ(r) + ρ(r)uα(r)uα(r) (9.16)

where cs is the speed of sound. In our model c2s = 1/2, yielding

Dαα = D0 = 1/4 (9.17)

If, on the other hand, the fluid is in uniform motion with a velocity uα,
we have Cαα(t ≥ 1) = uα

2. Substituting this in (9.13) we again obtain
Dαα = 1/4. The model is Galilean invariant. If the equilibrium distribution
does not contain the uu term then we find D = 1/4−uα

2. The system is not
Galilean invariant, the local dispersion coefficient depends on the local flow
velocity. It is usual practice to simulate low Reynolds number (Re) flows by
solving the “creeping flow” equations, valid for Re << 1. To do so, one omits
the uu term in the equilibrium momentum flux tensor (at the macroscopic
level it is this term which gives rise to the non-linear convective term in the
Navier-Stokes equations). This procedure simplifies the collision operator.
However, we see here that, when studying dispersion in flowing fluids, this
approximation introduces a velocity dependent local diffusion coefficient. It
is only valid if Dα >> u

2
α.

9.3.3 Varying the Peclet Number

The value of the molecular diffusion coefficient D0 = 1/4, implies that the
system has a low natural Peclet number. The Peclet number Pe quantifies the
relative displacements of a tracer particle due to convection and molecular
diffusion. In terms of a characteristic length scale l̄, velocity ū, and diffusion
coefficient D̄, it is defined as Pe = ūl̄/D̄. For high values of Pe convec-
tive transport dominates. For low values molecular diffusion dominates. In
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the lattice Boltzmann model the velocity fields must satisfy the unsurprising
condition that the flow remain significantly sub-sonic, that is u(r) << cs,
where cs is this the speed of sound. There are tight stability limits on cs and
it must take a value close to cs ∼ 1/

√
2. If we define a grid Peclet number

PeG, for which D̄ = D0, ū =< u(r) > and l̄ is the lattice spacing, then, using
the equation for the molecular diffusion coefficient (equation (9.17)) this im-
plies PeG << 2. That is, the system has a low “natural” Peclet number. This
problem can be eased somewhat if we decouple the tracer from the lattice-
Boltzmann fluid by noting that, for any state of the lattice-Boltzmann equa-
tion, we can hypothetically convert some of the tracer particles into rest par-
ticles. We then have a modified tracer distribution f ′i(r) = fi(r)− ρ(r)Δ/ρ0
and a rest particle distribution f0(r) = bΔρ(r)/ρ0, where b is the number of
discreet velocities. Thus, bΔ/ρ0 is the probability of a particle being at rest
after the action of the collision operator. This procedure leaves the important
hydrodynamic quantities (local density, flow velocity and pressure gradient)
unchanged. It does, however, reduce the pressure term in the tracer mo-
mentum flux tensor to ρ(r)(c2s − bΔ/2ρ0). Considering one lattice site and
substituting the modified momentum flux tensor into (9.5) we find that, for
our model (for which b = 18),

D0 =
1
4
− 6Δ
ρ0

(9.18)

The propagation equation, equation (9.4), becomes

Pα(r, t+ 1) =
∑

i �=ib

Pα(r− ci, t)f ′i(r− ci, t)
ρ(r− ci, t)

+
∑

i=ib

Pα(r, t)f ′i(r, t)
ρ(r, t)

+
fi

0(r)
ρ(r)

Pα(r, t) (9.19)

whilst all the other equations can simply be written with f ′i(r) replacing fi(r)
(rest particles make no contribution to the VACF). By using this procedure
we remove the restriction outlined above, making it possible to access higher
Peclet numbers.

9.3.4 The VACF at Infinite Time

In order to calculate dispersion coefficient (equation (9.3)) we need to either
know, or subtract off automatically, the contribution from the infinite time
value of the VACF. This can be done quite simply as follows. In the limit
of long times the distribution of the quantity we propagate, Pα(r, t), will
tend to its equilibrium distribution. That is, a distribution independent of
t. If we write the distribution in the form Pα(r,∞) = Aρ(r) and substitute
this for Pα(r) in the propagation equation (equation (9.9)) we see that this
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distribution is in fact invariant under propagation. This is, therefore, the form
of the equilibrium distribution. The value of the constant A is fixed by the
fact that the sum of Pα(r, t) over all sites in the system is conserved. Thus,

Pα(r,∞) = ρ(r)
ρ0

〈Pα(r, 1)〉 (9.20)

Having calculated Pα(r,∞) it is possible to perform the entire calculation in
center of mass coordinates by changing the initial conditions to

P̄α(r, 1/2) = Pα(r, 1/2)− Pα(r,∞) (9.21)

then propagating P̄α(r, t) rather than Pα(r, t). The second term is, by def-
inition, invariant under the propagation operation. Both the components of
the VACF will now decay to zero and the Cαβ(∞) terms in (9.3) will auto-
matically be included using this modified initial condition. This approach is
computationally useful because any round-off errors are applied equally to
both terms and automatically cancel. It is therefore the method we prefer to
employ.

9.3.5 Generalization

There are two notable respects in which the method outlined above can be
generalized. Firstly, it can be used to calculate any function that can be
written in the form of the average of the product of an initial probability,
a trajectory probability and a final probability. For example, using a simple
scalar quantity instead of ci to weight the trajectories we simply solve the
convection diffusion equation for the initial scalar distribution (see Fig. 9.1.
More interestingly, the self dynamic structure factor (SDSF) F (k, t) can also
be calculated in this way, for a given value of the wave-vector k . As with
the VACF, the result will automatically be averaged over all possible start-
ing points and all possible trajectories in the system, giving an extremely
high statistical accuracy [20,21]. The SDSF is the Fourier transform of the
distribution function for the time dependent displacement of tagged particles
(ri(t))

F (k, t) = 〈exp (−ik · (ri(0)− ri(t))〉 (9.22)

As such, it gives more detailed information about the actual form of the
distribution. The VACF only provides information about the second moment.
In principle, by making use of a cumulant expansion, the SDSF can be used
to extract information on higher order moments.
The second generalization is to problems in which the flow of the fluid

is time-dependent [22], not in a steady state. The procedure simply involves
retaining the dynamic LBE distributions, fi(r, t). One could envisage that a
combination of these two generalizations would be very useful for studying
dispersion in time dependent turbulent flows, although, to our knowledge,
this has not been attempted.
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9.4 Applications of the Model

9.4.1 Dispersion in a Tube

The classic example of non-equilibrium tracer motion is dispersion in a fluid
flowing through a tube. This problem was first treated experimentally and
theoretically by Taylor [24]. For this system, where the velocity field in known
(so long as the Reynolds number is small), the dispersion coefficient along
the tube axis can be calculated analytically

D

D0
= 1 +

Pe2

48
(9.23)

where the Peclet number Pe is defined Pe = R < u > /D0, with R the
tube radius. Taylor’s approach was subsequently generalized by Aris [25] and
this process is now known as Taylor-Aris dispersion. To simulate Taylor-
Aris dispersion our procedure is as follows. We map a cylinder onto the
lattice and run the lattice-Boltzmann simulation under the influence of a
uniform external force density F, directed along the axis of the tube, until
a steady state is reached. More efficiently, the iterative procedure described
by Verberg and Ladd [26] could be used to reach the steady state. Using the
method described above, we then apply the moment propagation equations
to calculate the VACF for tagged particles in the system. By using periodic
boundary conditions in the plane perpendicular to the tube axis, the problem
reduces to two dimensions. Only one lattice spacing being required for the
tube cross-section. Note that this is only possible because we are calculating
the VACF, a quantity depending only on the flow velocity. Since the flow
velocity does not vary along the tube axis, the VACF is unaffected by the
periodic boundary conditions. If the calculation is performed by actually
following the spacial and temporal evolution of the tracer this is not the case
and fairly extensive three dimensional simulations are required [27]. A degree
of approximation is inevitably introduced by mapping the cylinder cross-
section onto a lattice so we calculate an effective radius, R∗, for the model
cylinder by calculating the the average flow velocity and then using the exact
result derived from the Navier-Stokes equations to define < u >= FR∗2/8η,
where η is the fluid viscosity. The values of R∗ approach the nominal radius
R as we increase the system size.
If we examine the expression from which we calculate the dispersion co-

efficient (equation (9.13)), we can make the following observation: the first
two terms are independent of the flow velocity, only terms in the summation
depend on the flow field. These terms are thus hydrodynamic, in the sense
that in the absence of any flow they are zero. This leads us to define a “flow”
contribution to the VACF, Cf (t),

Cf (t) = C(t+ 1)− C(∞) (9.24)
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and a corresponding time dependent hydrodynamic dispersion coefficient,
Df (t),

Df (t) =
1
2

t∑

0

Cf (t) (9.25)

corresponding to the summation of terms in (9.13). In the limit t → ∞, we
therefore have

Df (∞) = D −D0 (9.26)

That is, Df (t) characterizes the dispersion due to flow, over and above simple
molecular diffusion. According to the Taylor-Aris result this is simply,

Df (∞) = Pe
2

48
(9.27)

In Fig. 9.2 we have plotted the dimensionless flow component of the VACF,
Cf (t)/ < u >2 as a function of the dimensionless time tD0/R

∗2. Normalizing
the function by < u >2 makes the initial value independent of the Peclet
number (so long as the Reynolds number is small). The dimensionless time
is the time divided by the time it takes a particle to diffuse, by molecular
diffusion alone, a distance the order R∗2. Because of the symmetry of the flow
in the tube, the only way a particle can “forget” its original velocity is by
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<

u>
2

R=2.5
R=4.5
R=8.5

Fig. 9.2. Tube flow. The dimensionless flow component of the velocity autocorrela-
tion function as a function of the dimensionless diffusive time. The data correspond
to tubes with different nominal radii R, given in lattice units.
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diffusing in a direction transverse to the flow direction. Therefore, molecular
diffusion always determines the decay of the VACF. The data plotted in
Fig. 9.2 are for various nominal tube radii and for a fixed Reynolds number
Re = 0.01. This means that the average flow velocity and molecular diffusion
coefficient are not the same for the three sets of data. Nonetheless, we see
that, plotted in these dimensionless terms, the data rapidly collapse onto a
single curve, independent of the tube radius. The decay is in fact a simple
exponential. It should also be noted that this diffusion controlled decay of
the VACF, implying D ∼ 1/D0 for a fixed flow velocity, always leads to
Taylor-Aris-like behaviour in the sense that D/D0 ∼ Pe2.
If we integrate the dimensionless VACF then, in these units, the Taylor-

Aris result corresponds the integral, at long times, approaching a value 1/48
[28]. In Fig. 9.3 we have plotted the time integral of the dimensionless VACF,
multiplied by 48. If we recover the Taylor-Aris result the plot should approach
unity. As we see, for the tube with nominal radius R = 2.5 lattice spacings
(which is very small) there is an error of a few percent but as we increase the
resolution of the simulation, by increasing R, the exact result is recovered.
The results also show that the dispersion coefficient reaches a constant on a
time-scale t ∼ R2/3D0. On shorter time-scales the dispersion coefficient can-
not be regarded as a constant and a simple diffusive picture for the transport
process is inadequate.
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Fig. 9.3. Tube flow. The dimensionless time dependent flow diffusion coefficient as
a function of the dimensionless diffusive time. The data correspond to tubes with
different nominal radii R, given in lattice units.
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9.4.2 Dispersion in Cubic Periodic Arrays

A more complex system we can consider is that of a close packed cubic array
of spheres. This system, while still possessing a high degree of symmetry, is
notably more complex in that the speed and direction of the streamlines are
no longer constant. There is a probability that a particle’s velocity becomes
decorrelated from its initial velocity by convection along, as well as diffusion
between, streamlines. Thus, one might imagine, it mimics more closely the
system of most practical interest, a random medium. Indeed, extensive studies
on periodic systems have been made with the aim of understanding dispersion
in random media [29].
To calculate the VACF for this system we again make use of the symme-

try by simulating only one cubic cell and applying periodic boundary condi-
tions. Again this is an advantage of working at the velocity, rather than the
positional level. The latter would require the explicit simulation of a large
number of cells. The simulations were repeated using larger cells (and there-
fore spheres with a larger nominal radius, R) until the results, to within a
percent, became independent of nominal radius. We will not focus here on the
low Peclet number behaviour, but rather on the high Peclet number asymp-
totic behaviour. In Fig. 9.4 we have made the same dimensionless plot we
used to analyse the Taylor-Aris results. The dimensionless flow component of
the VACF is plotted in terms of the dimensionless diffusive time. The data
shown are for Peclet numbers 8, 16, 32, 64 and 128. Clearly, the data do not
all collapse onto the same curve, as they do for Taylor-Aris dispersion. In par-
ticular, at short times, the decay depends on the Peclet number and at high
enough Peclet number oscillations in the rate of decay can clearly be seen.
These correspond to the tracer particles repeatedly traversing the cubic cells
and experiencing, because of the symmetry, a partial recorrelation of their
velocities. What is must notable from the figure though, is that the curves do
approach one unique curve with increasing Peclet number. That is, at high
Peclet numbers the decay of the VACF is dictated by molecular diffusion. Be-
cause of the symmetry, it is clear that the particle velocities do not become
decorrelated by convection and Taylor-Aris type behaviour (D/D0 ∼ Pe2)
should be recovered.
To check this, we have calculated the dispersion coefficient at high Peclet

numbers. The values we obtained are shown in Fig. 9.5, where we also com-
pare with the experimental measurements of Gunn and Price [30]. Firstly,
the agreement with the experimental values is good (there is a substantial
statistical error associated with the experimental values). If we allow for the
fact that, in the experiments, increasing the Peclet number also involves in-
creasing the Reynolds number there is a small correction to the simulation
results that does not influence the agreement significantly. It is clear from the
data that we are approaching an asymptotic scaling D/D0 ∼ Pe2. That is,
despite the increased complexity of this system, we recover simple Taylor-Aris
type dispersion. Brenner has argued on theoretical ground that this should
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Fig. 9.4. Periodic close packed cubic array. The dimensionless flow component
of the velocity autocorrelation function as a function of the dimensionless dif-
fusive time. The lines correspond, from bottom to top, with Peclet numbers
128, 64, 32, 16 and 8.

be the case [31]. It should be noted that this is not the behaviour one expects
for a truly random media, where velocity correlations can decay purely by
convection [10]. This calls into question the practice of using spacially peri-
odic media as models for dispersion in random porous media and indicates
that, even where one has a random model medium, care must be exercised
in excluding the effect of boundary conditions.

9.5 Conclusions

We hope to have convinced the reader that while with hindsight the lattice-
Boltzmann equation can be regarded, at its simplest, as a finite difference
scheme for solving the Navier-Stokes equations, there is added value in main-
taining its historical roots. These are firmly embedded in kinetic theory. To
this end we have pointed out the conceptual and practical values of using
this concept within the framework of multiscale computations. We have fur-
thermore given a specific illustration of the advantages of maintaining the
kinetic perspective to study tracer transport in flowing fluids. Hopefully the
new millennium will yield still more applications in computational science of
the equation that, over a hundred years ago, Boltzmann himself “despaired”
of solving,
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Fig. 9.5. Close packed cubic array. The dispersion coefficient at high Peclet num-
bers.
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10 Atomistic Simulations of Solid Friction
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Abstract. Friction between two solid bodies in relative sliding motion takes place
on a large spectrum of length and time scales: From the nanometer/second scale
in an atomic force microscope up to the extremely macroscopic scales of tectonic
motion. Despite our familiarity with the effects of friction, fundamental questions
remain unanswered. The atomistic origins of well-established phenomenological fric-
tion laws are controversial. Many explanations, seemingly well-established, have
recently been called into question by new experimental results. Computer simu-
lations have also revealed flaws in previous theoretical approaches and led to new
insights into the atomistic processes responsible for friction. In this chapter, selected
computer simulation studies of friction and their implications will be discussed. Em-
phasis will be given to the question what one can learn from a friction simulation
and how it is possible to avoid effects that merely arise due to poor models. More-
over, it will be outlined how it is possible to gain insight into tribological processes
that take place on macroscopic time scales with the help of atomistic computer
simulations, which are typically constrained to the nanosecond regime.

10.1 Introduction

The possibility of developing an atomistic theory of the friction between
solid bodies has increased significantly over the last decade. New experi-
mental techniques have made it possible to study well-defined mechanical
single-asperity contacts, typically a few nanometers broad in an atomic force
microscope [1,2] (AFM) experiment and a few micrometers broad in a surface
force apparatus (SFA) experiment [3,4]. The physical laws observed in such
nano and microscale contacts often deviate qualitatively from those observed
in macroscopic systems. For instance the friction-load dependence in a single
asperity contact [5,6] usually deviates strongly from the linear relationship
that is almost commonly observed in macroscopic multi-asperity contacts [7].
Another example for scale effects is the onset of oscillatory depletion forces
between approaching surfaces when the confinement of a lubricant is reduced
to a few nanometers and the frequently observed concurrent dramatic in-
crease in shear forces that oppose relative lateral sliding of the two solids
in contact [8,9]. It is obvious that the fundamental understanding of tribol-
ogy can only be achieved by a combination of experimental, theoretical, and
computational efforts. This is not only an interesting, scientific endeavor, but
improving the understanding and ultimately controlling tribology (science
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of friction, lubrication, and wear) has been and will remain useful for the
development of new technologies. One example is the design of novel micro
mechanical devices which one may expect to be facilitated through a better
atomistic theory of friction. From a computational point of view, even the
small scale is not trivial to model realistically, because the chemically de-
tailed, atomistic simulation of an AFM tip scratching on a surface requires
the simultaneous use of techniques that are usually employed to address dif-
ferent regimes in space and time. Yet, despite these difficulties, atomistic sim-
ulations will not only yield insight into nanotribology but moreover become
increasingly important in explaining macrotribological phenomena, among
other reasons because they can provide constitutive equations for the use in
finite element methods.
Another reason for the importance of simulations in tribological contexts

with respect to purely analytical approaches is that there is no principle
like minimization of free energy that determines the steady state of non-
equilibrium systems. But even if there was, simulations would be needed to
address the complex systems of interest, just as in many equilibrium prob-
lems.
This chapter is meant as a help to conduct atomistic simulations of fric-

tion between solids in a meaningful and efficient way, rather than to give
a broad overview of the field. A far more comprehensive review on results
of friction simulations was given recently [10]. Here, technical issues will be
emphasized. In particular, I will try to point out the traps (of which there
are many) that can significantly depreciate the scientific relevance of friction
simulations. Their results depend to a large degree on the boundary condi-
tions, the choice of the initial geometry, and the way in which the system is
driven. This statement might sound trivial, but the idealized framework or
artificial features encountered in simulations often make it difficult to com-
pare the results of the simulations to experiments. Hence it is necessary to
know prior to the simulation which interactions of the system are relevant
and need to be included into the model and which features of the model are
irrelevant. In the present context, I call a feature irrelevant if it does not
change the tribological behavior in a qualitative way. The relevant features
of a model may include the degree of correlation in the surface corrugations
between the two sliding objects, the degree and chemical nature of surface
contamination, the dimensionalities of the interface and that of the slider,
the surface roughness on mesoscopic scales, the elasticity of the solids in con-
tact, thermal and quantum fluctuations of the atomic motion, as well as the
age of the contacts, to name a few. Naturally, the relevance of one feature is
most always intertwined with that of another feature. Moreover the chemical
composition of the interface, which is reflected in the choice of the force field,
can also play an important role. In order to understand specific behavior, it
may be insufficient to analyze models that merely employ simple two-body
potentials.
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A typical contact between two real solid bodies is such that prior to
contact the bodies are three-dimensional, their two-dimensional surfaces are
locally curved, contaminated with dirt or intentionally lubricated, and the
surface corrugations of the bodies are uncorrelated. The solids can yield plas-
tically and long-range elastic deformations are possible, which however, are
strongly suppressed by long-range elastic interactions. In simulations one of-
ten encounters the opposite situation. The surfaces are already flat before
contact takes place, there is no contamination, and by some magical force,
the corrugation profiles of both bodies are not only identical, but also per-
fectly aligned. The atoms are sometimes pinned to ideal lattice sites, disabling
long-range elastic deformations, or alternatively, they are coupled as a two-
dimensional harmonic sheet, thus neglecting long-range elastic interactions.
Whether these discrepancies of the real world and the simulation is relevant
depends on the problem under investigation. In many cases, however, the
tribological properties are qualitatively altered by the simplifications.
Not only the geometry and the interactions of the model are important,

but in addition, the results of tribological simulations often depend sensi-
tively on the way in which the system is driven [11]. Driving the slider in an
unrealistic way poses the second class of potential traps. One can get qual-
itatively different behavior if one assumes constant sliding velocity or if the
slider is pulled with a weak spring. Furthermore the equivalence of different
ensembles that are valid for large systems in equilibrium thermodynamics
(constant separation vs. constant load, constant temperature vs. constant
energy) usually breaks down in non-equilibrium situations.
The reminder of this chapter will start with the presentation of a simple

but rather generic case study emphasizing the role of boundary conditions
and other details. In Sect. 10.2, a simple model for friction will be introduced,
originally proposed by Prandtl but commonly referred to as Tomlinson model.
The important lesson to be learned is that we need to identify relevant me-
chanical instabilities in order to understand solid friction. A discussion of dry
friction will be given in Sect. 10.3, including the analysis of friction forces as a
function of disorder and dimensionality of interface and slider. Selected stud-
ies of simulations incorporating lubricants will be presented in Sect. 10.4.
Sect. 10.5 focuses on technical issues, in particular on how to model the con-
fining walls and the way in which they are driven. Sect. 10.6 will contain the
conclusions.

10.1.1 The Relevance of Details: A Simple Case Study

Let us have a look at the relevance of ‘details’ in a simple model system.
Consider two rigid, impenetrable, identical walls separated by a boundary
lubricant, like a quarter layer of simple, non-reactive spherical molecules. A
schematic one-dimensional representation is given in Fig. 10.1. The lower wall,
which will be called the substrate, is supposed to be fixed, while the upper
wall is pulled via a spring of varying stiffness k at a small, fixed velocity v. For
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large k, one expects smooth sliding of the upper wall similar to fixed sliding
velocity, while at small k one expects stick-slip motion, which may best be
characterized as a jerky motion of the top wall: The slider is stuck for a long
time and then suddenly pops forward before it is stuck again. Stick-slip mo-
tion occurs when mechanical stress builds up sufficiently slowly in a contact.
After a certain threshold force is reached, namely the static friction force,
the two solids start sliding and the stored elastic energy is quickly released
as kinetic energy, ultimately leading to generation of heat and/or plastic de-
formation. From a macroscopic description, unstable, stick-slip trajectories
are obtained if the friction force between slider and substrate decreases with
increasing velocities. Stick-slip motion is observed from nanoscale junctions
up to tectonic plates.

L vk

Fig. 10.1. Schematic representation of boundary lubrication. The slider is moved
with respect to a fixed substrate at velocity v via a spring of stiffness k. The two
solids do not interact directly but only via the boundary lubricant (full circles).

The idealized situation of Fig. 10.1 can be analyzed in terms of a nu-
merical simulation. This is done by first defining a suitable Hamiltonian for
the system. One can then integrate the resulting equations of motion numeri-
cally. The friction force can be calculated by averaging the force in the driving
spring or alternatively from the force that is exerted from the boundary lu-
bricant and the substrate on the upper wall. Once steady state is reached,
the two methods must give the same expectation value since otherwise the
top wall would be accelerated. See Sect. 10.5 for a more thorough description
of technical issues. The results of such a molecular dynamics simulation for a
two-dimensional interface are shown in Fig. 10.2. Both surfaces are identical,
namely triangular lattices with identical lattice constants. In one simulation,
the surfaces are oriented perfectly, in another simulation, one surface is ro-
tated by 90o, which makes the two surfaces essentially incommensurate. Two
crystals are called incommensurate if they do not share a common periodicity.
Of course, in a computer simulation two solids cannot be perfectly incommen-
surate due to the finite system size. But if the smallest common periodicity
coincides with the linear length of the simulation cell, one can usually call
the surfaces incommensurate for all practical purposes.
On the left-hand side of Fig. 10.2, one can see that the friction forces

depend sensitively on the relative orientation of the two surfaces, even though



10 Atomistic Simulations of Solid Friction 293

10
−1

10
0

10
1

10
2

10
3

k        [ε0/σ0

2
]

0.00

0.05

0.10

0.15

<
F

>
/L

com.
inc.

300 400 500 600 700
t / t0

−0.4

−0.2

0.0

0.2

0.4

F
(t

) 
/ L

k =   1
k = 10
k = 20

Fig. 10.2. Left: Average force per load 〈F 〉/L acting on a block pulled at small
velocity with spring constant k. Block and substrate are separated by a boundary
lubricant. Commensurate (com) and incommensurate (inc) orientations between
the identical, confining walls are considered. Right: Instantaneous force acting on
the spring of the commensurate system. From Ref. [12].

they are not in direct contact. In particular, the commensurate system shows
large friction forces in the stick-slip regime at small pulling spring constants k
and small forces in the smooth-sliding regime at large k. In the commensurate
case, the instantaneous force behaves in a very periodic way. In particular, at
those values of k, where the friction forces start to decrease dramatically, one
can observe spikes of two different heights in the force spikes, see the right-
hand side of Fig. 10.2. The different spikes can be related to hcp and fcc
like configurations of the boundary lubricant (ABA and ABC type layering
for lower wall, lubricant, upper wall). However, one needs to be aware that
insights into such detailed mechanisms are only useful, if we try to understand
experiments in which the effort has been made to orient two surfaces with
respect to one another.
Unlike the perfectly aligned walls, the incommensurate system does not

show the dramatic drop in 〈F 〉 as it crosses over from stick slip to smooth
sliding. Hence, in the present study, we may identify the crossover regime for
the commensurate surfaces as an artifact of the commensurability. Moreover
the spikes in the instantaneous friction force (not shown here) are rather
erratic [12]. To some degree, the resulting trajectory of the incommensurate
case is even reminiscent of earthquake dynamics as discussed in Ref. [12].
This can be seen as unexpected, because the microscopic origins of friction
between tectonic plates certainly involve much more complicated processes
than those considered in the simple molecular dynamics (MD) study of a
confined boundary lubricant. So even if we reproduce the effects observed
in nature or experiment satisfactorily, it does not necessarily mean that we
have identified the relevant atomistic processes leading to friction. The case
study also reveals that the friction force derived from the simulations depends
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strongly on the driving device, namely the harder the spring the smaller the
friction force. This effect is particularly strong for the commensurate surfaces.

10.2 Solid Friction Versus Stokes Friction

The classical laws of friction go back to Coulomb and Amontons [13]. Static
friction Fs, the force needed to initiate relative sliding between two solid bod-
ies, is proportional to the load L (first law) and independent of the (apparent)
area of contact (second law), thus

Fs = μsL. (10.1)

μs is called the static friction coefficient that (to a good approximation) only
depends on the chemo-physical properties of the interface and the two solids
in contact. The third friction law says that the kinetic friction force Fk, the
force needed to keep two solids in relative sliding motion, is (rather) indepen-
dent of the sliding velocity v. Fk also satisfies the first two laws and in most
cases does not vanish in the limit small of sliding velocities v. Of course, in
true thermodynamic equilibrium, or alternatively in the mathematical limit
v → 0, one would expect kinetic friction to vanish. For most practical and
experimental applications, however, one is far away from this limit. The sit-
uation is similar to that of the static shear modulus C44 of window glass
at room temperature. While the true equilibrium value of C44 is commonly
believed to be zero, the experimentally measured result is in the order of a
few dozen Gigapascals.
The solid friction laws are different from those for Stokes or viscous fric-

tion which are valid for the motion of a (Brownian) particle in a fluid or
a gas. In the case of Stokes friction, there is a linear relationship between
driving force and average velocity v, provided that F is sufficiently small.
The proportionality coefficient, which is related to the viscosity, can be cal-
culated (at least in principle) from equilibrium statistical mechanics in terms
of linear response theory [14]. The viscous force turns out to be the natural
consequence of the interaction of one particle with many other particles. The
(linear) response of one particle or excitation to an external force can be de-
scribed as if the other particles were acting like a heat bath composed by a
friction term linear in velocity plus random forces. This concept cannot only
be applied to the famous Brownian motion, but it can be extended to many
different cases such as the damping of phonons or other elementary excita-
tions in solids. Note that the fluctuation-dissipation theorem also predicts
the response to a small time-dependent force.
If the coupling of a degree of freedom to a heat bath is a condition for

Stokes friction or viscous damping, what is the requirement for Fs and Fk

to be different from zero? If two solids interlock geometrically, there will of
course be a finite Fs, see Sect. 10.3.1. However, finite Fs does not imply that
Fk(v → 0) remains finite in the limit v → 0. In particular if we disregard
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the internal degrees of freedom of the two solids, there is no way to dissipate
energy and Fk = 0 simply owing to energy conservation. In a first approxi-
mation, one may reflect the internal degrees of freedom in terms of a viscous
force, but then Fk would still vanish linearly with v in contradiction to most
experimental observations.
In 1928, Prandtl suggested that elastic instabilities change the picture

qualitatively [15]. Usually this insight is attributed to Tomlinson, who pub-
lished similar ideas in 1929 [16]. In his model, Prandtl describes the substrate
as completely rigid. The slider is moved at constant velocity v with respect to
the substrate. The slider’s surface atom feel a force from the substrate that
is periodic with the substrate’s lattice constant b. Furthermore the surface
atoms are supposed to be coupled harmonically to their lattice sites by a
spring constant k and there is dissipation linear in the atom’s velocity vn. If
we assume that the microscopic origin of the dissipation is the consequence
of the interaction of atom n with a heat bath, i.e. the substrate’s phonons,
then its equation of motion reads:

mnẍn +mγẋn = −k(xn − x0n) + f0 sin(2πxn/b), (10.2)

where we assume that the equilibrium position x0n of atom n in the slider
moves at constant velocity, for example x0n = v t.
Let us analyze the motion of atom n qualitatively for large values of k

and small values of k. If k is larger than 2πf0/b, then it is easy to show that
each atom has only one well-defined mechanical equilibrium site, irrespective
of the value of x0n. When the upper solid is moved at a constant, small v, each
atom will always be close to its unique equilibrium position. This equilibrium
position moves with a velocity that is in the order of v. Hence the dissipated
friction force is of the order of mγv and consequently Fk vanishes linearly
with v as v tends to zero. The situation becomes different for k < 2πf0/b.
Atoms with more than one stable equilibrium position will now pop from one
stable position to another one when the slider is moved laterally. For small
pulling velocities v, such a process occurs when an atom does not have a
mechanically stable position at time t + δt in the vicinity of the old stable
mechanical position near which it was located at time t. Such a situation is
discussed in Fig. 10.3 in terms of the time-dependent potential energy V (x)
associated with the conservative forces, namely

V (x) =
1
2π
f0b cos(2πx/b) +

1
2
k(xn − x0n)2 (10.3)

with ẋ0 = v0 > 0. In the ‘popping’ processes (indicated by the thick solid
line in Fig. 10.3), the velocities ẋn will exceed v by orders of magnitudes for
v → 0. At small v, the dynamics along most of the sinusoidal line is rather
independent of the precise value of v0 and the dissipated energy

∫
dxγmv

has a well-defined positive limit Fk(v0 = 0). Hence in the absence of thermal
fluctuations that have been disregarded in this discussion, Fk remains finite
even in the limit of infinitely small v.
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Fig. 10.3. Schematic representation of the time evolution of the potential energy
in the Prandtl model (dashed lines), see (10.3). All curves are equidistant in time,
separated by a time interval Δt. The circles denote mechanically stable positions
and the solid line connects mechanically stable points, indicating the motion of an
overdamped point particle.

Based on his model, Prandtl formulated the condition for finite Fk in the
limit of small sliding velocities: If the (elastic) coupling of the mass points
is chosen such that at every instance of time a fraction of the mass points
possesses several stable equilibrium positions, then the system shows hystere-
sis.... In the context of friction, hysteresis translates to finite static friction
or to a finite kinetic friction that does not vanish in the limit of small sliding
velocities. The word ‘elastic’ in Prandtl’s statement is put into parenthesis,
in order to make the statement more general, for example, applicable to the
case of boundary lubrication. From this analysis, we see that solid friction
arises from instabilities. Hence an important lesson to be learned from com-
puter simulations is what these instabilities on a microscopic level are and
how these instabilities affect the tribological behavior of a junction. A sep-
arate issue is how the heat generated in the pops is transported away from
the interface.
Incorporating thermal fluctuations changes the picture qualitatively. In

the strict limit v → 0 when all atoms have sufficiently much time to find their
true thermal equilibrium for all relative wall positions, friction will vanish lin-
early with v according to linear response theory. However, in a large regime of
small, but finite v, Prandtl predicted that owing to thermal fluctuations, the
friction force in his model should only have small, logarithmic corrections in
the order of ln v. Prandtl’s hypothesis was rederived many times and an anal-
ysis of experimental AFM data seemed to confirm that picture [17]. However,
a more refined analysis of the thermal fluctuations in the Prandtl-Tomlinson
model making use of the theory of fluctuation induced spinodal decomposi-
tions [18] suggests corrections in the order of (kBT ln v)2/3, which indeed fits
the experimental results distinctly better than the simple ln v corrections.
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10.3 Dry Friction

The term dry friction obtains a novel meaning in computer simulation, be-
cause one can easily prepare absolutely non-contaminated surfaces. Exper-
imentalists often use a less strict definition and mean to express that no
lubricant has been added intentionally.

10.3.1 Rigid Walls and Geometric Interlocking

Early theories of friction were based on the purely geometric argument that
friction is caused by interlocking of impenetrable and rigid surface asperi-
ties [19,20]. The idea (Fig. 10.4) is that the top solid must be lifted up a
typical slope tanα determined by roughness on the bottom surface. If there
is no microscopic friction between the surfaces, then the minimum force to
initiate sliding is

Fs = μsL (10.4)

with μs = tanα. This result satisfies Amontons’s laws with a constant co-
efficient of friction μs ≡ Fs/L = tanα. In 1737, Bélidor obtained a typical
experimental value of μs ≈ 0.35 by modeling rough surfaces as spherical
asperities arranged to form commensurate crystalline walls [20]. However,
asperities on real surfaces do not match as well as envisioned in these models
or sketched in Fig. 10.4. On average, for every asperity or atom going up a
ramp, there is another going down. One concludes that the mean friction be-
tween rigid surfaces vanishes unless they happen to have the same periodicity
and alignment.

α

L
F

Fig. 10.4. Sketch of two surfaces with interlocking asperities. The top surface ex-
periences a normal load L and a lateral force F , which attempts to pull the top
surface up the slope tan α. The bottom wall is fixed.

A cancellation between ‘up’ and ‘down’ on an atomic scale happens par-
ticularly easily between two flat, incommensurate surfaces. There have been
a significant number of computer simulations showing that the wearless static
friction becomes extremely small, except in the artificial case of identical and
perfectly aligned walls. Atomistic computer simulations of iron on iron [21],
a blunt pyramidal diamond tip on a metal surface [22], a blunt pyramidal
copper tip on incommensurate copper substrates [23], interlayer sliding in
multiwalled carbon nanotubes [24], and Lennard Jonesium on Lennard Jone-
sium [25] all confirm the simple prediction that lateral forces cancel out to



298 Martin H. Müser

a significant degree. These simulations have in common that the solids were
treated truly three-dimensionally and that the atoms (interacting via micro-
scopic interaction potentials) were allowed to relax thus making long-range
elastic deformations possible. Significant lateral forces were observed only
in combination with strongly irreversible processes such as plastic deforma-
tion [22], the production of wear [23,26], material mixing, or cold welding [25],
but not due to geometric interlocking.
When two rigid solids in contact are disordered, the cancellation of lateral

forces is less systematic than for an incommensurate contact between rigid
bodies. For flat solids with atomic scale roughness only, one can expect that
the lateral forces Fs grow proportional to the square root of the intimate area
of contact A for a given, constant normal pressure σn. Since the load L is given
by Aσn, the ratio Fs/L vanishes with 1/

√
A as A goes to infinity [27]. But

geometric interlocking only explains static friction. Kinetic friction can still
vanish, because the energy required to lift up the slider in Fig. 10.4 to the top
of the hill can be regained in principle by moving it downhill in a controlled
way. As discussed in Sect. 10.2, the situation can change dramatically in
principle if the elastic interactions within the bulk are sufficiently weak to
cause elastic or other instabilities.

10.3.2 Elastic Deformations: Role of Disorder and Dimensions

Although we are concerned with computer simulations of friction rather than
with theoretical arguments, it is instructive to analyze the interplay of dis-
order, dimensionality, and elastic deformations. To do this, let us consider
a dobj-dimensional elastic solid, in which neighbored atoms are coupled via
simple springs. We may safely assume the free elastic solid to be mechanically
stable, meaning that the tensor of the elastic constants is positive definite.
The dimension of the interface between the slider and disordered substrate
is denoted by dint.
In such a situation, there will be a competition between the random

substrate-slider interactions and the elastic coupling within the solids. An
important question to ask is how the interactions change when we change
the scale of the system, for example, how strong are the random and the
elastic interactions on a scale 2L if we know their respective strengths on
a scale L. Here L gives the linear dimension of the solids in all directions,
that is to say parallel and normal to the interface. As discussed above, the
random forces between substrate and slider will scale with the square root
of the interface’s size, hence the random forces scale with Ldint/2. The elastic
forces on the other hand scale1 with Ldobj−2. In the thermodynamic limit
1 A linear chain can be more easily compressed if we replace one spring by two

springs coupled in series. In two dimensions, springs are not only coupled in series
but also in parallel, so that the elastic coupling remains invariant to a ‘block
transformation’. Each additional dimension strengthens the effect of ‘parallel’
coupling.
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L → ∞, the effect of disorder will always dominate the elastic interactions
or vice-versa, unless

Ldint/2 ∝ Ldobj−2. (10.5)

For limL→∞ Ldint/2/Ldobj−2 >> 1, the random interactions will dom-
inate and hence pinning via elastic instabilities cannot be avoided. This
disorder-induced elastic pinning is then similar to that of compliant, or-
dered systems as discussed above within the Prandtl-Tomlinson model. For
limL→∞ Ldint/2/Ldobj−2 << 1, the long-range elastic forces dominate the
long-range random forces. The slider’s motion can only be opposed by elastic
instabilities if the elastic coupling is sufficiently weak at finite L in order to
make local pinning possible, again akin of the case λ > 1 in the Prandtl-
Tomlinson model.
The so-called marginal situation, in which both contributions scale with

the same exponent, dint/2 = dobj − 2, occurs in the important case of 3-
dimensional solid bodies with 2-dimensional surfaces. In the marginal situ-
ation, the friction force can stay finite, however, one may expect the fric-
tion force per unit area and hence the friction coefficient to be exponen-
tially small [28]. The marginal dimension in the case of dobj = dint (adsorbed
monoatomic layers, charge density waves, etc.) is dmar = 4 [29]. But even
in dimensions smaller than the marginal dimension, friction forces may turn
out to be small. One example is an experimental quartz crystal microbal-
ance study [30] of solid and liquid krypton films on disordered gold surfaces
(dobj = dint = 2), for which the pinning forces were undetectably small.

10.3.3 Extreme Conditions and Non-elastic Deformations

In many cases, the atomistic topology of chemical bonds changes when two
solids come into intimate contact and are start to slide. As a consequence,
the surface will be altered dramatically when the two solids are removed
from one another after the sliding process. A description in terms of elastic
deformations is not applicable any longer in such a situation. There can be
many reasons for non-elastic deformations: (i) plastic flow during contact
formation [26,31] or other thermodynamically driven cold welding [25], (ii)
plastic deformations due to large normal pressures [22], (iii) large sliding
velocities [32], and (iv) sliding induced generation of dislocations [23], to
name a few.
The processes that occur in these strongly non-equilibrium situations may

become rather complex. This makes it even more important to set up the
simulations and to analyze the processes in a meaningful way. For example,
it is important to choose the initial conditions such that the bulks have room
to yield and that the generated debris does not necessarily remain within the
contact. A simulation methodology which allows debris to be transported
away from the interface is shown in Fig. 10.6 in the context of sliding of
lubricated surfaces.
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One particularly nice study of strongly irreversible processes consists of
large scale molecular dynamics simulations of the indentation and scraping
of metal by Belak and Stowers [22]. Their simulations show that tribological
properties are strongly affected by wear or the generation of debris, which
in turn may again depend strongly on such ‘details’ as the system’s and the
interface’s dimensionality. Belak and Stowers considered a blunted carbon
tip that was first indented into a copper surface and then pulled over the
surface. Since diamond is a hard material, the tip was treated as a rigid
unit. Interactions within the metal were modeled with an embedded atom
potential and Lennard-Jones potentials were used between Si and Cu atoms.
In the two-dimensional (2D) simulation, indentation was performed at a

constant velocity of about 1 m/s. The contact followed Hertzian behavior
up to a load L ≈ 2.7 nN and an indentation of about 3.5 Cu layers. The
surface then yielded on one side of the tip, through the creation of a single
dislocation edge on one of the easy slip planes. The load needed to continue
indenting decreased slightly until an indentation of about five layers. Then
the load began to rise again as stress built up on the side that had not
yet yielded. After an indentation of about six layers, this side yielded, and
further indentation could be achieved without a considerable increase in load.
The hardness, defined as the ratio of load to contact length (area), slightly
decreased with increasing load once plastic deformation had occurred.
After indentation was completed, the carbon tip was slid parallel to the

original Cu surface. The work to scrape off material was determined as a
function of the tip radius. A power law dependence was found at small tip
radii that did not correspond to experimental findings for micro-scraping.
However, at large tip radii, the power law approached the experimental value.
Belak and Stowers found that this change in power law was due to a change
in the mechanism of plastic deformation from intragranular to intergranular
plastic deformation.
In the three-dimensional (3D) simulations, the substrate contained as

many as 36 layers or 72,576 atoms. Hence long-range elastic deformations
were included. The surface yielded plastically after an indentation of only 1.5
layers, through the creation of a small dislocation loop. The accompanying
release of load was much bigger than in 2D. Further indentation to about 6.5
layers produced several of these loading-unloading events. When the tip was
pulled out of the substrate, both elastic and plastic recovery was observed.
Surprisingly, the plastic deformation in the 3D studies was confined to a re-
gion within a few lattice spacings of the tip, while dislocations spread several
hundred lattice spacings in the 2D simulations. Belak and Stowers concluded
that dislocations were not a very efficient mechanism for accommodating
strain at the nanometer length scale in 3D.
When the tip was slid laterally at v = 100m/s during indentation, the

friction or ‘cutting’ force fluctuated around zero as long as the substrate did
not yield (Fig. 10.5). This nearly frictionless sliding can be attributed to the
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Fig. 10.5. Normal (left) and lateral (right) force on a three dimensional, pyramidal
diamond tip on a copper surface as a function of time. No plastic flow was reported
up to 1,000 time steps. The indentation stopped at about 5 layers after 2,000 time
steps. From Ref. [22].

fact that the surfaces were incommensurate and the adhesive force was too
small to induce locking. Once plastic deformation occurred, the cutting force
increased dramatically. Fig. 10.5 shows that the lateral and normal forces are
comparable, implying a friction coefficient of about one. This large value was
expected for cutting by a conical asperity with small adhesive forces [37].

10.4 Lubrication

Any atom or molecule that is bonded weakly to a surface can be considered
to perform as a lubricant as long as they do not get squeezed out of the
microscopic points of contact. Examples are not only synthetic and mineral
oils, but also molecules from the atmosphere physisorbed between the surfaces
such as hydrocarbon chains or sometimes even simple nitrogen molecules.
Lubricants hinder two surfaces to come into intimate contact. Their presence
inhibits or at least reduces the generation of wear and debris. For example,
an appropriate additive in a lubricant reacts with a fresh metal surface to
form protective surface films. In many cases, a lubricant film glassifies in a
point of large normal stress, i.e., in a microscopic point of contact. When the
junction breaks, the contact breaks within the lubricant and not within one
of the contacting asperities.
The traditional view is that lubricants do not only reduce wear but gen-

erally reduce friction between two solids. This is certainly true for most
macrotribological processes. However, as we have seen in many examples dis-
cussed above, we do not expect any significant solid friction in a microscopic
contact as long as no plastic deformation or other strongly irreversible pro-
cesses occur. In the absence of such processes, the presence of a few adsorbed
lubricant particles can increase solid friction, as it is able to accommodate the
surface corrugation of both walls simultaneously and thus lock the confining
walls together.
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The overwhelming majority of experimental and technological sliding sys-
tems incorporates lubricants. It is important to include the effect of these
lubricants in simulations if one wants to compare simulations to the bulk
of tribological experiments. It is then desirable to mimic the experimental,
mechanical and thermodynamic boundary conditions such as temperature T ,
pressure p, chemical potentials μi, etc. as closely as possible. One should of
course keep in mind the Gibbs-Duhem relation, which states that it is not
possible to specify all intensive thermodynamic variables (such as T , p, the
various μi) independently from one another.
In a molecular dynamics (MD) or in a Monte Carlo (MC) simulation

it is rather simple to keep T and p constant. It is more difficult to keep
μ constant, because this requires the use of grand canonical moves. These
moves typically equilibrate rather slowly and are likely to interfere seriously
with the dynamics in MD or the pseudo-dynamics in MC simulations2. Since
most tribological effects are non-equilibrium effects and therefore intimately
linked to the dynamics of the system rather than to their thermodynamics,
it is important not to alter the dynamics in an artificial way.
In some cases, it is nevertheless desirable to change the number of atoms

in the contact. It was suggested to include this possibility with the help of
reservoirs [33] as shown on the left-hand side of Fig. 10.6. While the total
particle number N is kept fixed in such a simulation, the number of atoms
in the contact can change and one may refer to such a simulation as pseudo
grand canonical. The externally applied pressure (tensor) and temperature
can then be imposed like in an equilibrium simulation, for instance in such a
way that the lubricant remains fluid in the reservoir.
The simulation of the reservoir necessitates simulating many bulk-liquid

molecules outside the real contact, producing a certain computational over-
head. It was suggested to replace the need for a reservoir by fixing T and the
parallel pressure p‖ to bulk values [34]. It was furthermore suggested to con-
trol p‖ by adjusting the normal separation D between the solids and to leave
the contact area A constant. The strategy would be to repeat simulations
with different values of N , all under the same fixed A, p‖, and T . One of the
results would be the depletion force, which is the average normal pressure
〈p⊥〉 times A, as a function of N similar to that shown on the left-hand side
of Fig. 10.6. Note that the differentiation between p‖ and p⊥ implies that
the lubricant does not correspond to an isotropic fluid any longer. Indeed,
the oscillations in the depletion forces are accompanied by strong layering
in the lubricant. In order to understand the concurrent dramatic increase in
the resistance to sliding observed in experiments [8,9], one also has to inves-
2 If the MC simulation consists of small local moves only, then the generated tra-

jectories correspond to overdamped dynamics that may provide valuable informa-
tion on solid friction. However, there is no general principle for determining the
appropriate probability distribution of steps in a non-equilibrium MC simulation.
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Fig. 10.6. Left: Geometry of a pseudo grand canonical simulation box. Small, reg-
ularly arranged spheres represent gold atoms from the solid bulks, while larger
circles are associated with lubricant molecules. The lubricant can go back and forth
between contact and reservoir. Right: Normal force as a function of separation for
two different lubricants as a function of surface separation. From Ref. [33].

tigate the effect of confinement on the viscosity [35] and the way in which
the (atomic-scale) corrugations imprint into the lubricant [36].

10.4.1 Boundary Lubrication

Boundary lubrication refers to a situation in which most of the lubricant
has been squeezed out of the contact and the remaining lubricant glassifies.
It usually occurs in a mechanical contact under high load and low speed
conditions. In the extreme limit, only a few atoms remain in the contact. But
even a few atoms alter dramatically the friction between two surfaces.
Since in most cases lubricants are only weakly bonded to surfaces, the

most commonly used form for the lubricant-lubricant and lubricant-wall in-
teractions are Lennard Jones (LJ) potentials. LJ potentials reflect the impor-
tant effect that atoms attract when separated by a sufficiently large distance,
but repel and behave like hard disks in the presence of a large external pres-
sure.
It has been shown in a series of molecular dynamics simulations [27,38,39,40]

that the presence of a small contamination layer even as thin as a sub-
monolayer leads to static and kinetic friction between two incommensurate
surfaces. Within the model calculations the two walls would have had zero
static friction if no weakly bonded molecules had been introduced into the in-
terface. As argued above, the weakly bonded atoms are able to accommodate
the surface roughness of both confining walls simultaneously, which makes
the walls lock together. Of course, in order to obtain not only static friction
but also non-zero kinetic friction, it is necessary for the atoms to exhibit
mechanical instabilities, see Sect. 10.2. Whether or not the atoms experi-
ence instabilities may depend on the special properties of the system such as
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dimensionality and symmetry of the confining walls and their relative orienta-
tion, the details of the lubricant wall interactions such as the sign of the first
higher harmonic, and further details. Fig. 10.2 suggests that there are more
instabilities present for incommensurate surfaces than for commensurate sur-
faces in the smooth sliding regime where the pulling spring is hard, while in
the stick-slip regime (small values of k) the upper wall in the commensurate
case experiences instabilities as a whole owing to geometric interlocking.
The microscopic friction-load relation for boundary-lubricated flat sur-

faces turns out to be similar to that of Amontons’s macroscopic friction law
F = μL, or a simple generalization thereof, namely

τk = τ0 + αp⊥, (10.6)

where τk = Fk/A is the (kinetic) shear pressure, τ0 an adhesive offset, and
α a constant that can be associated with the friction coefficient μ if the
externally imposed normal pressure p⊥ = L/A is distinctly larger than τ0. A
nearly linear relation between τs and p can be observed over a wide range of
pressures, which is shown exemplarily on the left-hand side of Fig. 10.7 for
the case of smooth sliding.

Fig. 10.7. Left: Kinetic shear stress τk as a function of normal pressure for different
velocities. The data of data like that on the left was fitted to (10.6). Right: The
resulting fit parameters α (top) τ0 (bottom). From Ref. [40]

It is interesting to analyze the velocity dependence of the coefficients τ0
and α, which is shown on the right-hand side of Fig. 10.7. In agreement with
Coulomb’s observation, the kinetic friction force Fk is barely sensitive to the
sliding velocity v: The parameters α and τ0 only vary logarithmically with v.
The overall decrease of τk with v can be associated with thermal activation
and diffusion of the lubricant atoms out of their metastable traps [40], con-
firming previous interpretations of simple rate-state models of friction [41].
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10.4.2 Hydrodynamic Lubrication and Its Breakdown

When the contact geometry and the operating conditions are such that the
load is fully supported by a fluid film, the surfaces are completely separated.
This is generally referred to as the hydrodynamic lubrication and can be well
described in most cases by Reynold’s equation. When the surfaces are easily
deformable, as in rolling contact bearings or human and animal joints, the
equations of elasticity and the pressure dependence of lubricant dependence
must also be included in the solution of the problem [42]. The hydrodynamic
or elastohydrodynamic continuum theory begins to break down as atomic
structure becomes important.
A general assumption of continuum theories is the stick condition of the

lubricant near a solid wall, that is to say, the tangential velocity of the fluid
at the fluid wall interface is set equal to that of the wall. When two surfaces
come closer and the confinement is increased, slip can occur at the interface.
It is then convenient to introduce a slip length S into elastohydrodynamic
continuum calculations. S represents the distance into the wall at which the
velocity gradient would extrapolate to zero. The calculation of slip length
from velocity profiles has some ambiguity. The least ambiguous resolution to
the definition of slip length may be given in Ref. [43]. Additional effects due to
increasing confinement have been discussed at the beginning of this Sect. 10.4.
A more thorough discussion of the literature on atomistic simulations in the
hydroelastic lubrication regime is given in Ref. [10]. Some technical issues
relevant to the thermostatization of lubricants will also be given below in
Sect. 10.5.5.

10.5 Setting Up a Tribological Simulation

10.5.1 The Essential Ingredients

When designing a computer simulation of tribological phenomena, one needs
to model (i) the physo-chemical properties of the two materials in contact and
the lubricant or the atmosphere involved, (ii) the initial conditions/geometry
and (iii) in addition to what needs to be specified in an equilibrium simu-
lation, the driving device. Let us assume that we do have a model for the
interactions between the atoms involved in the simulation. We then need to
set up Newton’s equations of motion for the various degrees of freedom and
integrate these equations of motion just like in a computer simulation of an
equilibrium system [14,44,45].
The relevant degrees of freedom are: The center of mass of the confining

top and bottom solidRt,b, the coordinates r of those atoms which are coupled
directly to the confining solids (typically the atoms in the outermost layers),
and the coordinates x of all other atoms, which may include lubricant atoms
and additional wall atoms that do not belong to the outermost layers.
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A quite general form to treat the driving device is to keep the substrate
fixed (Rb = const) and to couple the center-of-mass coordinate Rt of the
upper solid to an externally driven harmonic spring as shown schematically
in Fig. 10.1. The equation of motion for the top wall then reads:

MtR̈t = K
(
R0

t −Rt

)
+ Ft (Rt, {r}) . (10.7)

Here Mt denotes the inertia of top solid, K is the stiffness of the spring that
couples the solid to the driving device R0

t . In most cases, K is a diagonal ma-
trix, with three independent components that reflect the normal coupling, and
the coupling parallel to the two interfacial directions. Two popular choices
for R0

t are

R0
t = R

0
t,yey +R0

t,zez +

⎧
⎨

⎩

vxex t ‘tribological′ driving

ΔR0
t,xex cos(ωt) ‘rheological′ driving

(10.8)

with eα a vector of dimension unity pointing in α direction. Here, vx cor-
responds to the average sliding velocity of the upper wall if the spring (see
Fig. 10.1) is pulled at constant velocity, and ΔR0

t,x and ω are the amplitude
and frequency of the driving device if the response of the system to oscil-
lations is probed. Despite the simplicity of equations (10.7) and (10.8), it is
important to realize the implications that various choices can have. This issue
is discussed further below in Sect. 10.5.4.
We still need to specify the coupling Ft (Rt, {r}) between the coordinates

of the top solid Rt and the atoms belonging to the uppermost layer. The
discussion is of course equivalent for the bottom wall, even though one usually
does not move its position Rb. It is convenient to define equilibrium positions
r0n of atom n in the uppermost layer relative to the top solid under the
condition that no other atoms are present in the simulation. The equilibrium
positions r0n will then always have the same relative displacement Δr

0
n with

respect to the top solid, thus

r0n(t) = Rt(t) +Δr0n, (10.9)

where periodic boundary conditions are usually employed only in directions
parallel to the interface. The real position of atom n will then couple to its
equilibrium position. To lowest order this coupling can be considered har-
monic and the force that the ideal lattice point exerts on an atom of the
outermost layer can be written as

ft,n = −k
[
rn(t)− r0n(t)

]
. (10.10)

k is again a matrix in the most general case and the actual choice of k is in
principle highly non-trivial. To a large extent, k reflects the elastic properties
of the top solid, see the discussion of the choice for k in Sect. 10.5.6. Since
ft,n is the force that the equilibrium site and hence the top solid exerts on
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atom n, we can finally write down the expression for the last term on the
right-hand side of (10.7):

Ft (Rt, {r}) = −
∑

n

ft,n. (10.11)

As a next step, one has to specify the interactions between atoms within
the uppermost layer. A reasonable choice is to do this is again within the
harmonic approximation, thus

Vnn′ =
1
2

∑

n<n′

∑

α,β

kαβ
nn′ (rαn − rαn′)

(
rβn − rβn′

)
, (10.12)

with rαn being the α’s component of the vector rn. Note that the force con-
stants kαβ

nn′ do not only approximate the direct interactions between the atoms
in the uppermost layer, but they are effective quantities which may also con-
tain information of the elastic and geometric properties of the top solid. A
more detailed discussion is given in Sect. 10.5.6.
Lastly, the particles in the outermost layer must also be coupled to the

remaining atoms in the simulation cell, for instance to lubricant atoms or
those wall atoms that are not coupled to specific lattice sites. If the forces
between wall atoms with coordinate rn and remaining atoms with coordinates
xk are given by fkn(rk, xn), then the net force fn on atom n in an outermost
layer is given by

fn = ft,n +
∑

n′ �=n

∑

α,β

eαkαβ
nn′

(
rβn − rβn′

)
+
∑

k

fnk(rn, xk), (10.13)

where the sum in the last term on the right-hand-side of (10.13) includes
all atoms that do not belong to the uppermost layer. All other interactions,
i.e., those in between lubricant atoms or between slider and substrate atoms,
should be treated just like in equilibrium simulations of materials [44].

10.5.2 Physo-chemical Properties

The physo-chemical properties of the interface are reflected through the
choice of the atomic model potentials. One needs to specify the intrabulk
and the interbulk atomic interaction potentials as well as the interaction of a
lubricant or another adsorbed atom with all other atoms. Intrabulk proper-
ties are often modeled as entirely elastic, i.e., atoms belonging to one solid are
connected to each other and/or to their ideal lattice site via simple harmonic
springs. Such simplifying modeling will be sufficient if plastic deformation,
cold welding, etc. do not play a significant role in the processes of interest.
Many studies use simple Lennard Jones (LJ) potentials for the interbulk

interactions and the interactions between lubricant and walls. LJ interactions
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are given by

V (rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

, (10.14)

where εij and σij have units of energy and length, respectively. Typically,
the interactions are truncated at a distance r(c)ij and shifted in such a way

that V (rij) is continuous at r
(c)
ij . There is a lot one can learn from systems

modeled in this way, since LJ potentials are sufficient to describe the generic
feature that two atoms attract each other when they are separated by a long
distance, while they repel upon close approach. Moreover, there is a lot of
flexibility in the choice of the parameters εij , σij , and also the radius r

(c)
ij . The

effect of adhesive interactions can be switched on or switched off depending
on the choice of r(c)ij . A typical choice for r

(c)
ij for which adhesive effects are

eliminated is the cutoff in the minimum of V (rij), hence r
(c)
ij = 2

1/6 σij .
The use of LJ potentials is also widespread in coarse grained models

of polymers. Simulations of friction between polymer bearing surfaces, i.e.,
simulations of shear forces between polymer brushes, are done in terms of
bead-spring models [46,47,48] In bead-spring models, all interactions between
polymer segments consist of LJ interactions and additional non-linear poten-
tials keep the segments bound together [49]. Note that the effect of a good
or a bad solvent can be included into such a coarse grained model via the
choice of cutoff radius r(c) and temperature T , making it possible to access
distinctly larger length and time scales than if all atoms had been included
explicitly into the simulation.
Often, one tries to understand the friction between two specific solids. In

such a case, LJ potentials are usually not sufficient and more realistic descrip-
tions are required just like in an equilibrium simulation. Many materials show
complicated surface reconstruction after cleavage, which often alters surface
properties and hence friction dramatically. This concerns metals, whose sur-
face cannot be described accurately in terms of simple two-body potentials.
A popular choice for the simulation of metals are so-called embedded atom
potentials. Usually, layered materials and carbon nanotubes cannot be mod-
eled with simple two-body potentials either and more realistic description are
required, see Refs. [44,50] and references therein for a more detailed overview
of empirical many-body potentials.

10.5.3 Initial Geometry

The frictional properties of a slider-substrate system do not only depend on
the chemical nature of the two solids, the lubricant, and the thermodynamic
conditions such as temperature, normal pressure, etc., but also on the way in
which the system is initially set up. Most simulations of friction take place
between two flat surfaces, as shown on the left-hand side of Fig. 10.8, while
most well-controlled experimental single asperity contacts employ curved tips,
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either an AFM tip scratching over a smooth substrate or two crossed mica
cylinders in SFA experiments. A geometry with similar contact mechanics as
those occurring in AFM or SFA experiments is shown on the right-hand side
of Fig. 10.8.

Fig. 10.8. Schematic representation of initial geometries. Left: Flat surfaces. Mid-
dle: Blunt tip on substrate. Right: Curved tip on substrate.

There are many processes that can differ qualitatively as a function of the
initial geometry, because of the differences in the distribution of the normal
stress in the contact. One obvious example is the squeeze-out dynamics of a
fluid lubricant when the asperity approaches the substrate [52]. But also the
dry friction depends strongly on the geometry. For flat, disordered surfaces,
there is a well-defined friction coefficient μs, which however, decreases with
the area of contact A. This is shown on the left-hand side of Fig. 10.9. In the
case of a dry, curved tip, Fs depends only linearly on L if tip and substrate are
commensurate, which is shown on the right-hand side of Fig. 10.9. The pres-
ence of a few contaminating or lubricating atoms changes these dependencies
again.
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Fig. 10.9. Left: Static friction coefficient μs = Fs/L as a function of interface size
A for flat, amorphous walls with different degrees of contamination. From Ref. [27]
Right: Fs as a function of load L for a curved tip (commensurate, amorphous, and
incommensurate) on a crystalline substrate. Right: From Ref. [51].

Only the quartz crystal microbalance (QCM) [53], which enables one to
measure the viscous friction between an adsorbate layer and a smooth crys-
talline surface does not incorporate curved surfaces. However the simple scal-
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ing arguments presented in Sect. 10.3.2 show that the processes and the po-
tential instabilities occurring in QCM experiments are likely to be different
from those occurring between two three-dimensional solids.
Before setting up the simulation it is advisable to consider whether surface

curvature plays an important role in the process of interest. However, one
needs to be aware that the computationally feasible radii of curvature Rc

are distinctly smaller than experimental Rc. Employing curved surfaces also
reduces the real contact and thus produces computational overhead outside
of the contact. Moreover it would be advisable to do simulations for different
Rc and to test whether scaling arguments to extrapolate to larger Rc can be
employed.

10.5.4 Driving Device

There are many ways in which the solids can be coupled to a driving device.
A rather generic way is to couple the upper wall to a spring that is moved
according to a well-described procedure, i.e. rheologically or tribologically.
The scenario is visualized in Fig. 10.1 and described in more detail in between
(10.7) and (10.11). The use of one simple spring K is a simplistic way to
model not only the experimental driving device, but to some degree also the
elasticity of the slider.
There are two important limits for the value of K. One limit is to use an

infinitely weak spring K → 0 and to set the (hypothetical) position of the
driving device a distance ΔZ away from the actual position of the top wall
such that KΔZ = L. This mode is equivalent to impose a constant force
and is frequently used to drive the system in the direction normal to the
interface, in which case L corresponds to the load. It was shown that small
normal spring constants K result in smaller friction forces than if the system
was driven with large K, at a given average load L [54]. The reason is that
the slider has more possibilities to cross energy-barriers if the spring is weak
and hence the slider chooses the path of minimum resistance. Of course, in
terms of implementing the condition normal load, one would replace the first
term of the right-hand side of (10.7) simply with the externally imposed load
L. The other limit is K →∞, in which case the position of the top wall Rt

is identical with that of the driving device R0
t . For tribological driving, this

typically implies a constant sliding velocity mode for the lateral motion and
in case of zero normal velocity a constant separation constraint. The effects of
the lateral spring constant on the average friction has already been discussed
in the simple case study of Sect. 10.1.1.
The driving device can have different modes in different directions. A

natural choice would be to apply a constant load mode in the normal z-
direction, while the slider is pulled with a weak spring parallel to the x-axis,
and coupled to another non-moving spring in y direction.
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10.5.5 Thermostating

Most experiments are conducted in such a way that, far away from the slid-
ing surfaces, constant temperature is maintained. The heat produced in the
sliding process is conducted away from the interface via phonons and in the
case of metals heat dissipation also occurs via electrons. One can mimic the
effect of heat conduction in a simulation by employing thermostats or heat
baths similar to those used in equilibrium simulations. However, there are
a few additional difficulties in a non-equilibrium simulation involving sliding
surfaces.
(i) There is no well-defined frame of reference. (ii) The driving device does

work on the system. The final thermal energy or temperature and thus the
system’s properties will depend on the rate with which energy is pulled out
of the system. In equilibrium simulations, static properties including thermal
energy do not depend at all on the strength of that coupling and dynamical
properties should depend only little on the coupling to the heat bath.
These three difficulties can be easily overcome if certain rules are re-

spected. (i) Only the outermost layers should be thermostated and thermo-
statization should take place within the frame of reference defined by the
motion of Rt. Alternatively, dissipative particle dynamics (DPD) [55] may
be used to thermostat locally in the center-of-mass system of two neighbored
wall atoms. DPD ensures that the Gibbs distribution is recovered as the
stationary solution to the Fokker-Planck equation. As compared to regular
Langevin-type thermostats, DPD is more difficult to implement and slightly
more CPU time intensive. However, it has the distinct advantage to act only
on a local scale. In some cases, one may also want to use a DPD thermostats
within the lubricant, for example to mimic the effect of collisions with sol-
vent atoms that are not simulated explicitly, but only taken into account
via effective interactions. If implemented correctly, Navier-Stokes coefficients
are recovered in the hydrodynamic limit [56]. (ii) In extreme conditions, the
effects of heating cannot be neglected any longer. One possibility is to define
the thermostat’s coupling strength such that the heat flow into the thermo-
stat corresponds approximately to that which one would have if the system
was made infinitely large normal to the interface (size consistency).

10.5.6 Methods to Treat the Wall’s Elasticity

From a computational point of view, we do not want to spend most of the
CPU time with the simulation of the bulk in order to reproduce the proper
elastic behavior. However, the discussion above shows that a proper descrip-
tion of elastic effects may be crucial. If we only couple the atoms to the
equilibrium sites, we suppress elastic deformations and as a consequence un-
realistic pressure profiles in the contact may be obtained. On the other hand,
we do not want to neglect the effect of long-range elastic interactions by
simply connecting the surface atoms with effective springs. This would favor
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elastic long-range deformations in an unrealistic way and thus make possible
elastic instabilities.
It is possible to reproduce the bulk’s proper static, elastic response by a

suitable choice of the coefficients k in (10.7) and kαβ
nn′ in (10.12), because all

harmonic modes can be integrated out in principle. The treatment can even
be generalized to a dynamic response in terms of Green’s functions [57]. Such
sophisticated treatments, however, are very demanding in several aspects,
and simplifying procedures are pursued in practice. The easiest approach is
to treat the bulk’s elasticity in a mean-field approximation, in which case one
only needs to define the coupling strength k of a wall atom to its ideal lattice
site. From the scaling arguments in Sect. 10.3.2, one may withdraw that k
would only have a well-defined value in the limit of the slider’s linear system
size L, if the spatial dimension dobj of the slider is larger than two. In d = 2,
the proper mean-field choice for k would be k ∝ lnL.
A good compromise is to use elastic coupling to the ideal lattice site and

next neighbor coupling. Such a model is not only an interesting generalization
of the Prandtl-Tomlinson model for the analysis of dry friction [58], but also
useful for computer simulations involving lubricants, because the lubricant
gets squeezed less easily through the confining walls. For flat surfaces, one
may use simple harmonic springs. If one of the two surfaces is curved as shown
in Fig. 10.10, then the harmonic springs have to be replaced with anharmonic
interactions: Within the radius of contact rc, the normal deflection δz(r) of
the tip atoms with respect to an uncompressed tip is proportional to r2,
where r represents the lateral distance from the center of the tip. In order
to reproduce the proper Hertzian contact profile p⊥ ∝ (r − rc)3/2 for a tip
pressed against a hard but non-adhesive substrate, the normal restoring force
f⊥ to the lattice site must be chosen according to [51]

f⊥(δz) =
√
δz/RcAa/K, (10.15)

where Rc is the tip’s radius of curvature and Aa the surface area per atom
represented in the surface. Note that this procedure does not impose Hertzian
contact mechanics, but the final pressure distribution depends among other
things on the adhesive interaction between tip and substrate.

substrate
atomic equilibrium
position for free tip

coupling to
lattice site

coupling to
next neighbor

Fig. 10.10. Schematic representation of elastic interactions within a soft tip pressed
on a hard surface. Both couplings can have one component normal to the interface
and two transversal components.
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10.5.7 Calculation of the Friction Force

There are various ways to calculate the kinetic friction force. Using the nota-
tion introduced in Sect. 10.5.1, one can measure the force that the external
driving device exerts on the wall atoms, i.e., K(R0

t,x −Rt,0) with x the slid-
ing direction, or alternatively the total force that the top-wall atoms exert
on their equilibrium positions, i.e. the projection of

∑
n ft,n, see (10.10), onto

the sliding direction. We may also sum up the force between top-wall atoms
and all other atoms to obtain the friction force. The different ways should
be identical since otherwise the top wall would be accelerated. The argument
for the equivalence of the different ways to calculate the friction force breaks
down when the surface experiences a time-dependent external force as is the
case in the rheological driving mode. This issue has been discussed in detail
in Ref. [11] within the Prandtl-Tomlinson model.
In the absence of thermal fluctuations, static friction Fs is defined as

the maximum external shear force necessary to invoke lateral sliding. In or-
der to calculate Fs, one can ramp up an external force arbitrarily slowly
Fext(t) = Ḟextt and identify the time tdep when the system depins and starts
sliding. Fs can then be associated with Fext(tdep). At finite temperature, the
precise value of Fs will depend on the rate Ḟext. Near the depinning thresh-
old, thermal fluctuations will assist the system to overcome the barrier and
small corrections to Fs, approximately in the order of ln Ḟext, will presum-
ably apply, similar to the kinetic friction in the Prandtl-Tomlinson model or
boundary lubrication [40].

10.5.8 Interpretation of Time Scales and Velocities

The interpretation of the length and time scales in a computer simulation
becomes important when comparison is made to experiment. The length scale
is defined in a computer simulation through the size of an atom with a typical
radius of about 1.5 Å. The definition of the time scale is much less clear
cut. According to the international system of units, a second is defined as
the duration of 9.192 109 and a few periods of a particular vibration of the
isotope 133Cs. However, the physics of this vibration is completely irrelevant
in a tribological context and a different definition of time scales will be more
appropriate. This definition will depend on the particular problem. In the
following two exemplary discussions, it will be assumed implicitly that there
is a time-scale separation between the vibronic motion of the atoms and all
processes requiring thermal activation.
Let us first consider the case of dry friction, i.e., an AFM tip in con-

tact with a substrate. Equation (10.2) is then frequently used to model phe-
nomenologically the results of a real experiment or of a computer simulation.
If we carry out a simulation of a specific experiment and use realistic model
potentials, then we will withdraw a similar value for the tip-substrate inter-
action strength f0 from the simulation as from experiment. We might also
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be successful in reproducing the rate γ with which energy is dissipated and
the (effective) coupling strength k between tip and driving device. However,
in almost all cases, we will not assign the experimental device/tip mass mexp
to our top wall, but a mass msim that is many orders of magnitude smaller.
This means that the relevant frequencies defined either via

√
k/m or via√

f0/m are also many orders of magnitude smaller in experiment than in the
simulations. Thus, in order to compare to experiment our velocities need to
be scaled by a factor

√
mexp/msim and comparing absolute velocities would

be meaningless.
Let us next consider the case of two boundary lubricated surfaces un-

der shear. The film confined between two surfaces is interpreted as a glassy
state, which is able to accommodate the atomistic surface corrugation of both
walls simultaneously. After a typical relaxation time τ , a lubricant atom will
undergo thermally activated motion, which eventually leads to lateral creep
motion of the slider. In correspondence to the concept of the Deborah number
D, which is defined as time of relaxation τ divided by the time of observation
Δt, one may expect the friction force to depend on the ratio of τ and the
time Δt necessary for the slider to move laterally a typical atomic length
scale Δl = Δt/v. A distinct advantage of computer simulation is that one
can alter the Deborah number at will either by varying τ via the normal
pressure or via a change in sliding velocity v.

10.6 Conclusions

This contribution is meant as a guideline for setting up a meaningful sim-
ulation of frictional processes. To do this successfully, it is helpful to have
both a good understanding of the underlying theoretical approaches and the
knowledge of recent advances in numerical algorithms.
Understanding the underlying theoretical ideas is important in order to

prevent the simulations to be meaningless when we want to compare our re-
sults to experiments. After all, the goal is to interprete and to understand
experiments. Since it is unfeasible to treat all relevant degrees of freedom in
a simulation, we are forced to make a model before we carry out the simu-
lation. In my opinion, there are two classes of mistakes that one can make,
one class is due to reductional modeling while the other class is due to fic-
titious modeling. Reductional modeling means that we have not captured
all aspects of the system, but what we simulate is at least part of the fuller
picture. Fictitious modeling includes a (friction) mechanism that is not rel-
evant in experiment but arises as a consequence of our model. For instance
if the walls are described as elastic media although plastic deformation can
occur and be a relevant contribution to the net friction, then we see a re-
duced part of the full picture. An example for fictitious modeling would be a
simulation in which long-range elastic interactions are neglected and elastic
instabilities occur, although they might only play a minor role in the real
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system and not contribute to friction. The following remaining compilation
of recommendations summarize many aspects of this chapter.
The cardinal and frequently encountered mistake is the use of commen-

surate surfaces. Even if there is ‘stuff’ between the surfaces, there will always
remain some finite (artificial) resistance to the initiation of sliding. The rea-
son is that commensurability breaks translational invariance in a very specific
way. It is certainly true that the effect often becomes negligibly small if the
distance between the walls is sufficiently large. It has yet been shown that
not only fluids but even a gas can pin two commensurate solids even if they
do not interact directly with each other [39]. Similar comments apply to
the simulation of friction between walls that have dense Langmuir-Blodgett
type layers grafted onto them. The atomistic processes occurring between
commensurate layers in simulations will be strikingly different from those
between non-matching surfaces in experiment.
The presence of a few adsorbed atoms on surfaces most always also alters

the tribological behavior qualitatively. This concerns in particular reactive
and reconstructing surfaces that have much higher friction in UHV than in
ambient conditions. In the other extreme, when two (flat) surfaces in contact
are believed not to deform irreversibly at all, then sliding in UHV will mainly
be opposed by a drag force. In this case, an adsorbed layer will be responsible
for a dramatic increase in solid friction.
Other issues discussed in this chapter include the effect of wall curvature

and initial geometry, the effects of long-range elasticity, the importance of
properly implementing the driving device (artifacts due to constant separa-
tion and constant, sliding velocity constraints), and thermostats that allow
to transport heat away from the interface in a non-equilibrium situation.
Concerning all these aspects, one should of course attempt to mimic the ex-
perimental situation as closely as computationally feasible. In some cases,
however, it is advantageous not to mimic experiment. For instance, if the
mass of the slider is small in the simulation, the gap between the macroscopic
processes and the microscopic motion is reduced. This makes it sometimes
possible to simulate processes on rather small time scales that occur only on
macroscopic time scales in experiment.
Multi-scale techniques that have been used in simulations of fracture like

in Ref. [59] will certainly prove valuable in friction simulations as well. These
techniques combine ab-initio, atomistic, and coarse-grained modeling within
one simulation. In particular, the simulation of an AFM tip substrate interac-
tion seems to be a well-suited problem: The intimate contact can be modeled
in terms of ab-initio, the area further outside with an atomistic description,
and the proper contact mechanics can be guaranteed with continuum meth-
ods for the areas even further away from the intimate contact.
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Abstract. Transition path sampling is a methodology which overcomes both the
long timescale problem and the lack of prior knowledge about transition mech-
anisms. Here we briefly review the basic principles of transition path sampling,
illustrate its application using autoionization in liquid water, and emphasize the
capabilities and limitations of the methodology.

11.1 Why Transition Path Sampling Is Needed

Many interesting processes in nature are characterized by the presence of
different relevant time scales. In a chemical reaction, for instance, the reaction
time can be many orders of magnitudes longer than the molecular vibration
period usually measured in units of femtoseconds [1]. Such a separation of
time scales creates serious problems for the computer simulation: on one
hand the resolution in time needs to be fine enough to capture the properties
of fast motions (such as molecular oscillations) and on the other hand the
simulation must be extended to times longer then the longest relevant time
scale in order to observe the events of interest (such as chemical reactions).
This is the notorious time scale gap problem addressed in this conference. It
is not only a problem in chemical physics. For example some comets exhibit
rapid transitions between heliocentric orbits inside and outside the orbit of
Jupiter [2]. While the transition, during which the comet transiently orbits
Jupiter for a few periods, is swift, many revolutions of the comet around the
sun can occur between transition.
Often, widely separated time scales are caused by energy (or free en-

ergy) barriers preventing the system from quickly visiting a representative
sample of pertinent configurations. In the past, many efficient computer sim-
ulation techniques [3] such as umbrella sampling [4], the multiple histogram
method [5], and, most recently, the Laio-Parrinello approach [6], to mention
just a few, have been developed to overcome such barriers and sample the free
energy surface for a specified control parameter (or order parameter). While
biasing schemes of this sort can be used to determine structural quantities
such as chemical potentials and equilibrium constants, they are of limited
use if one wishes to study the dynamics or kinetics of rare transitions. In this
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case, detailed knowledge of the underlying mechanism in terms of a reaction
coordinate is necessary to apply standard techniques such as the reactive flux
method [7,8,9].
For numerous problems of current interest, however, reaction coordinates

are not known, and in applying the techniques mentioned above one has
to rely on guessing the relevant, possibly collective, variables. If the selected
degrees of freedom do not capture the essence of the mechanisms under study,
such biasing schemes are bound to fail. Fortunately, there are diagnostic tools,
such as committor distributions (to be described later in the article), which
can be used to detect if the relevant degrees of freedom have been identified
correctly or not [10,11]. But what can one do when such failure has become
apparent?
To answer this question, it is important to distinguish whether the sys-

tem under consideration is simple or complex. The former is where dynamics
is dominated by energetic (as opposed to entropic) barriers, and the topog-
raphy of the energy landscape is not excessively complicated. In this case,
insight can be obtained by locating minima (stable states) and saddle points
(transition states) on the potential energy surface. This basic idea has been
successfully implemented in various methods including eigen vector follow-
ing [12,13], the nudged elastic band method [14], and hyperdynamics [15]. In
complex (i.e., non-simple) systems, however, the potential surface can exhibit
a huge number of distinguishing features, such as local minima, maxima and
saddle points. Explicitly enumerating all these features is impractical. Fur-
ther, dynamical bottlenecks need not coincide with these features in any
straightforward way. This fact is illustrated by the ”golf course” landscape,
in which an entropic barrier hinders the system from finding its energetically
most favorable configuration [16]. The failure of methods relying on search-
ing the potential energy surface for stationary points can be illustrated even
more drastically in entropy driven phase transitions, such as the freezing of
hard spheres experimentally observed in colloidal suspensions [17,18]. In such
processes all configurations accessible to the system are isoenergetic and any
transition is purely driven by entropic imbalances. No potential energy min-
ima or saddle points exist, but there still are stable states separated by a free
energy barrier and rare transitions between these stable states can occur. So
what then can we do for a complex system where we don’t know the mech-
anism and cannot find it by searching for specific points on the potential
energy surface?
Transition path sampling offers an answer by considering trajectories in-

stead of single configurations [19,20,21]. This change in perspective permits
the generation of rare transitions between stable states without prior knowl-
edge of mechanisms or reaction coordinates. Rather than requiring such prior
information as an input, transition path sampling can help in finding it. In
the following section we briefly review the essential ideas of transition path
sampling. More detailed descriptions of the method including several illustra-
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tive examples are given in two recently published review articles [10,11]. As
with any newly developed technique, there are misconceptions about what
transition path sampling can and cannot do. As such, we follow our summary
of the basic principles of transition path sampling with a discussion of its ca-
pabilities and its limitations, with emphasis on how these limitations might
be surmounted in the future.

11.2 How Transition Path Sampling Works

11.2.1 Probabilities of Trajectories

The transition path sampling method is based on a statistical mechanics of
trajectories in which every trajectory x(t) of length t is assigned a statistical
weight P [x(t)]. The set of all pathways x(t) consistent with the path prob-
ability P [x(t)] is called the transition path ensemble. Here x is a possibly
high dimensional vector including all variables necessary to specify the state
of the system under study. For instance, in a molecular system x may consist
of coordinates and momenta of all particles. The trajectory x(t) is a sequence
of such states, in which x0 denotes the first state on the trajectory and xt

denotes the last one. For practical reasons x(t) is represented by a or chain of
states, but in principle x(t) can be thought of as a general trajectory, which
can be continuous or discrete depending on the process one intends to study.
The form of the probability functional P [x(t)] specifying the weight of a

given path x(t) in the transition path ensemble depends on dynamical rules
governing the time evolution of the system. Let’s for simplicity assume that
the system evolves according to some set of equations of motion (for in-
stance Newton’s equations of motion) and that the dynamics has the Markov
property, i.e. the state x of the system at time t completely determines the
probability to find the system in a certain other state x′ a short time later.
Then, the probability of a particular trajectory to be observed is:

P [x(t)] = $(x0)
L−1∏

i=0

p(xiΔt → x(i+1)Δt) , (11.1)

where we have imagined that the pathway is represented by an ordered chain
of L states and p(xiΔt → x(i+1)Δt) is the (properly normalized) conditional
probability to observe the system in state x(i+1)Δt at time t +Δt provided
it was in state xiΔt a time Δt earlier. In the case of Newton’s equations of
motion (and of any other deterministic set of equations of motion) the path
probability P [x(t)] consists of a product of Dirac delta functions describing
deterministic trajectories flowing from the respective initial conditions. If the
system under study is more conveniently described by a stochastic equation of
motion (such as Langevin’s), the short time transition probability p(xiΔt →
x(i+1)Δt) is not singular and more than one trajectory is allowed to emanate
from the same initial condition x0. In any case, the path functional describes
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trajectories generated with a particular dynamical rule. Therefore, members
of the transition path ensemble are physical trajectories (as opposed, for
instance, to artificial minimum energy pathways) that can be used to study
kinetics and dynamics.
In (11.1), $(x0) denotes the distribution of starting points. This distribu-

tion of initial conditions might be the canonical distribution if one is studying
a system in thermal equilibrium. In other situations, $(x0) may represent a
specific non-equilibrium distribution of initial conditions generated in a par-
ticular experiment.

11.2.2 Defining the Transition Path Ensemble

Let us now restrict the transition path ensemble to trajectories starting in a
certain region A in phase (or configuration) space and ending in a different
region B:

P [x(t)] = hA(x0)$(x0)

[
L−1∏

i=0

p(xiΔt → x(i+1)Δt)

]

hB(xt)/QAB , (11.2)

where QAB normalizes the path ensemble. In the above equation, hA(x) (or
hB(x)) is a function which is one if its argument is located in A (or B) and
vanishes otherwise. Such a restriction is useful, when one is interested in rare
transitions between regions A and B, where A and B may characterize re-
actants and products of a chemical reaction, different phases of condensed
material, different conformations of a biomolecule, or different kinds of orbits
followed by a comet. Careful definition of regions A and B is a crucial step
in a path sampling study of rare transitions between long lived states [22].
On one hand, A and B should be large enough to accommodate equilib-
rium fluctuations when the system resides in one of these stable states. On
the other hand, it is important to avoid overlap of regions A and B with
the basin of attraction of the other stable state. If an overlap exists due to
non-discriminating definitions of states A and B, large portions of the tran-
sition path ensemble might reside entirely in one of the stable states without
displaying a real transition. Often, proper definition of the initial and final
regions is far from trivial requiring several trial and error attempts [1,10].
Introducing the characteristic functions hA(x) and hB(x) is not the only

way to restrict the transition path ensemble. In general, we may introduce
any particular functional F [x(t)] that specifies a subset of trajectories flowing
from x0:

P [x(t)] = F [x(t)] $(x0)

[
L−1∏

i=0

p(xiΔt → x(i+1)Δt)

]

/QF , (11.3)

where QF again normalizes the distribution. Such path ensembles with a
restriction different from hA(x0)hB(xt) are appropriate when probing non-
equilibrium properties, as has been illustrated in studying the relaxation of
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energy gaps in solvation dynamics [23]. In general, a restricting functional
F [x(t)] could be used to introduce a bias that facilitates sampling of any sort
of rare dynamical structures that might be of interest. An example could be
the space-time bubbles in glass formers [24].

11.2.3 Sampling the Transition Path Ensemble

The equations above provide abstract definitions of ensembles of pathways
in terms of the statistical weight of dynamical trajectories. In order to ex-
tract useful information from these ensembles, such as mechanisms and rate
constants, one must sample the transition path ensemble and harvest tra-
jectories according to their probability. This can be done efficiently by using
a Monte Carlo (MC) algorithm [19]. In such a procedure, one starts from
a trajectory with non-zero weight and then uses this trajectory to generate
a new one. The new trajectory is then accepted or rejected according to a
detailed balance criterion which ensures correct sampling of the ensemble.
Repeating this procedure over and over again, one carries out a random walk
through the space of all trajectories visiting points in this space according to
their weight in the transition path ensemble. Such a Monte Carlo procedure
is analogous to the Monte Carlo simulation of, say, a liquid, in which one
explores the potential energy surface by carrying out a biased random walk
through configuration space. A transition path sampling simulation proceeds
in an analogous way with the difference that the sampled objects are dynam-
ical trajectories instead of configurations. It is, however, important to realize
that while pathways are sampled with a Monte Carlo (MC) procedure, the
trajectories themselves are physical trajectories as, for instance, obtained in a
molecular dynamics (MD) simulation. In this case, transition path sampling
is an MC sampling of MD trajectories.
The efficiency of a transition path sampling simulation depends on the

specific recipe used to generate a new trajectory from an old one. We have
found that the “shooting and shifting” algorithm provides the highest effi-
ciency of all techniques applied so far [20]. In addition of being highly efficient,
this algorithm is the only one so far applicable for the sampling of determin-
istic trajectories [25], which have singular short time transition probabilities,
such as they are generated in most classical and ab initio molecular dynamics
simulations [1,26]. (Stochastic trajectories, which have continuous transition
probabilities, can be sampled with numerous different algorithms similar to
those developed to sample path integrals [27].) In the “shooting” part of the
algorithms one generates a new deterministic trajectory from an old one by
first randomly selecting a point along the old trajectory. Then one slightly
modifies the momenta belonging to this point by adding a small perturba-
tion δp to the momenta p. (Some care must be exercised when doing that
in order to maintain symmetry between forward and backward step [11]).
Starting from this perturbed state one “shoots off” new trajectory segments
of appropriate length both forward an backward in time. Finally, the newly
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created trajectory is accepted of rejected depending on how its statistical
weight compares to the weight of the old trajectory. Due to the chaoticity of
the equations of motion, the new trajectory quickly diverges from the old one
leading to rapid progress in the random walk through path space and, hence,
to efficient sampling. In the “shifting” part of the algorithm one merely shifts
the starting point of the trajectory in time by integration of the equations
of motion forward or backward in time. Of course, such an operation does
not create a completely new trajectory. Rather, a shifting move just selects a
slightly translated part of the same trajectory. Nevertheless, shifting is use-
ful when collecting path averages and should be added regularly to shooting
moves.
Modifications of this “shooting and shifting” algorithm can also be applied

to sample stochastic trajectories, as obtained from solutions of the Langevin
equation, and also to sample Monte Carlo “trajectories”. In principle, “shoot-
ing and shifting” can be applied whenever a dynamical rule to generate tra-
jectories is available. In all cases, deterministic and stochastic, the efficiency
of the “shooting and shifting” algorithm stems from the fact that the prop-
agation rule of the underlying dynamics is used to generate new trajectories
from old ones. As a consequence, much cancellation occurs in the expressions
for the acceptance probability [11]. Trajectories generated in this way have
a high acceptance probability even if they are very different (of course, this
is true only provided they are consistent with the imposed selection criterion
F [x(t)]). Using the algorithms described above one can efficiently explore
pathspace and collected large numbers of pathways on which the rare, but
important event of interest occurs. In the next section we discuss how these
pathways can be used to obtain knowledge of mechanisms and kinetics.

11.3 What Transition Path Sampling Can Do

As discussed earlier, the transition path sampling methodology was developed
to study rare, but important events occurring in complex systems for which
prior mechanistic knowledge is unavailable. Transition path sampling over-
comes both problems, the rare event problem and the lack of a proper reaction
coordinate, by formulating a statistical mechanics of trajectories in which the
weight functional for trajectories incorporates the required occurrence of the
rare event of interest as an additional factor. Due to this additional factor,
reactivity is maintained throughout the path sampling simulation and no
computing time is wasted generating trajectories along which the rare event
does not occur. In this sense, transition path sampling does to dynamics what
umbrella sampling does to statics. In this section we discuss these capabilities
of transition path sampling using a study of autoionization in liquid water as
an example [1].
In particular, we consider a volume of liquid water and imagine follow-

ing the motion of a particular water molecule. Typically, it will take about
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10 hours before this molecule will dissociate and form a pair of solvated
hydronium and hydroxide ions. The time scale for this process has been de-
termined experimentally by generating excess concentrations of the two ionic
species and monitoring their recombination as a functions of time [28,29].
The detailed mechanism of this process, however, is difficult to probe both
experimentally and in simulations and has been unknown until recently [1].

11.3.1 The Rare Event Problem

From a computational point of view, one of the main problems stems from
the fact that during the dissociation process, covalent bonds are broken and
new ones are formed. This problem has been solved and today simulations
of chemically reactive systems consisting of hundreds of atoms are routinely
carried out using the Car-Parrinello molecular dynamics (CPMD) method
based on density functional theory [30]. But since the longest time scales
accessible to ab initio molecular dynamics simulations of this kind are of the
order of dozens of picoseconds (a 1ps trajectory of 32 water molecules can be
carried out in about one day on a small PC cluster), the rare event problem
still persists. In fact, assuming the speed of computers keeps growing at the
current pace doubling every 18 month, one has to wait until the year 2080
to be able to observe one dissociation event per CPU-day in a sample of 32
water molecules. Thus, autoionization in liquid water cannot be studied with
straightforward computer simulation in the foreseeable future.
Naively, one might simply select the interionic distance as a reaction coor-

dinate. While such a choice can clearly distinguish between the intact water
molecule and the separated ion pair (provided the ions are far enough apart),
it fails to capture the essential physics of the dissociation process. Therefore
it can be used in calculations of equilibrium constants (again, this is true
only for a sufficiently large system), but it cannot be employed to produce
trajectories, in which the dissociation event actually takes place.1

11.3.2 Solving the Rare Event Problem
with Transition Path Sampling

Since transition path sampling does not require definition of a reaction coor-
dinate and is not adversely affected by the separations of time scales present
in the system, it can be used to study autoionization in liquid water. When
1 In their pioneering ab initio computation of the equilibrium constant for autoion-

ization in liquid water Trout and Parrinello used the distance between particular
hydrogen and oxygen nuclei as a reaction coordinate [31,32]. This reaction coor-
dinate permits the calculation of the potential of mean force required to separate
the ions in the initial stages of the dissociation. But because the separation of the
ions proceeds through a Grotthuss mechanism, this choice of reaction coordinate
is neither capable of a full characterization of the dissociation event nor able to
distinguish between the intact water molecule and the charge dissociated state.
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doing that, the first step consists in defining an order parameter capable of
distinguishing the intact water molecule from the dissociated ion pair. As
mentioned above, the interionic distance can serve as such an order param-
eter provided one selects a sufficiently large distance to characterize the ion
pair. In a small system, such as the 32 water molecule sample studied in [1],
however, the interionic distance can not discriminate between the two stable
states. Through trial and error we have found that the length of the shortest
hydrogen bond wire between the ions can accomplish that. Hydrogen bond
wires are known to provided effective routes for proton transfer in aqueous
systems and the absence of such a wire can stabilize a pair of hydroxide and
hydronium ions even in a system as small as 32 water molecules. Using the
presence (or absence) of a hydrogen bond connection as a criterion to define
initial region A and final region B dozens of reactive trajectories have been
generated with the shooting and shifting algorithm described above [1]. Since
the dissociation occurs rapidly when it takes place, sampled trajectories can
be as short as 300 fs.
Transition path sampling maintains the reactivity of these trajectories

throughout the simulation. Therefore no CPU time is wasted computing the
time evolution of the system between reactive events. It is this concentration
on the reactive event which makes transition path sampling an efficient way to
overcome the time scale gap discussed in the Introduction. The basic principle
of a transition path sampling simulation is essentially the same as the one
of a umbrella sampling Monte Carlo simulation. Just like in an umbrella
sampling simulation a biasing potential confines the sampled configurations
to a certain region in configuration space, transition path sampling confines
the sampling to a restricted region in trajectory space (in the case of the
autoionization problem this is the set of trajectories along which dissociation
occurs).
The CPMD trajectories collected with transition path sampling indicate

that the dissociation of a water molecule occurs in two basic steps. First a
rare solvent electric field fluctuation destabilizes an OH bond of a particular
water molecule. The proton initially belonging to this now broken bond then
transfers to a neighboring water molecule along a hydrogen bond. As the elec-
tric field generated by the solvent fluctuation keeps acting on the ion pair,
both proton and hydroxide can separate further along hydrogen bonds in a
Grotthuss like fashion [33,34]. At this point the two ions are still connected
by a wire of hydrogen bonds along which the ions can recombine when the
electric field subsides. Indeed, most of the ions pairs formed in this way are
of a transient nature and eventually recombine. In a few rare cases, however,
the hydrogen bond wire connecting the nascent ions breaks preventing rapid
recombination and trapping the ions in a charge separated metastable state.
The lifetime of this metastable state is long enough to allow the ions to sepa-
rate completely and diffuse to large distances. Thus, a successful dissociation
requires two events: first, a rare solvent electric field fluctuation must desta-
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bilize and OH bond and drive the two ions apart along a hydrogen bond
wire and, second, the hydrogen bond wire must break interrupting a route
for rapid recombination of the ions.

11.3.3 Interpreting the Ensemble of Harvested Paths

While some information about the transition mechanism can be gleaned by
mere inspection of the harvested trajectories, usually more stringent analysis
techniques are necessary to obtain the sought information. We found that one
useful way to do that consists in locating transition states along the harvested
trajectories [10,11,35]. Here, a transition state is defined in a statistical sense
as a configuration which is has the same likelihood to relax into either one
of the longlived stable states A and B. For a given configuration q relaxation
probabilities, or committors, pA and pB can be computed by initiating many
short trajectories at q with random momenta and observing wether they relax
into A or into B. The name “committor” indicates that pA and pB describe
how committed a particular configuration q is to the two states A and B. If
pA = pB ≈ 0.5 the configuration q is committed to neither A or B and can
be regarded as a transition state. Now, along a certain reactive trajectory
connecting A and B there exists at least on transition state defined in this
statistical sense. Locating transition states along all pathways harvested in
a transition path sampling simulation yields the “transition state ensemble”.
Analysis of this ensemble is usually far simpler than analysis of sets of entire
pathways and can produce valuable information about reaction mechanism.
We determined the transition state for autoionization for a single, but

typical trajectory. We found that for this particular trajectory the transi-
tion state coincided with the breaking of a hydrogen bond in the hydrogen
bond chain connecting the nascent ions. Trajectories initiated from config-
urations with intact hydrogen bond chain occurring before the transition
state predominantly lead to recombination of the ions. Trajectories initiated
from configurations with a broken hydrogen bond chain, on the other hand,
typically relaxed into the metastable charge separated state. This behavior
demonstrates that the breaking of the hydrogen bond wire connecting the
charges is indeed a crucial event in the autoionization process stabilizing the
ions in their charge separated state from which they can then diffuse to large
distances and separate completely. In another study, analysis of the transi-
tion state ensemble for ionic dissociation in aqueous solution has revealed the
importance of specific solvent degrees of freedom for the dissociation mecha-
nism [36].
Another analysis method not directly related to transition path sampling,

but is useful in conjunction with it, consists in calculating distributions of
committors (pA or pB) for certain subsets of configurations [11,10,36].



330 Christoph Dellago and David Chandler

11.3.4 Rate Constants

Since transition path sampling is based on harvesting physical dynamical
trajectories it can be used to calculate kinetic rate constants [37]. All infor-
mation on the kinetics of transitions between longlived stable states A and
B is contained in the time correlation function

C(t) =
〈hA(x0)hB(xt)〉

〈hA〉 , (11.4)

where 〈· · · 〉 denotes a thermal average. C(t) is the conditional probability
to observe the system in state B at time t given it was in state A at time
0 and it provides a link between the microscopic rate equations and the
microscopic dynamics of the system. If a separation of time scale exists, i.e.
the reaction time τrxn is much longer than the time τmol characteristic for
molecular motions, C(t) grows linearly in the time regime τmol ≤ t � τrxn
and the reaction rate constant kAB for the reaction from A to be B can be
inferred from the slope of C(t) in this regime [9].
Within the transition path sampling formalism, the correlation functions

C(t) can be calculated by exploiting an isomorphism between time correla-
tions functions and free energies [10,11]. Physically, this isomorphism can be
understood in terms of volumes in configuration and trajectory space. Free
energy differences in ordinary statistical mechanics essentially measure vol-
umes in configuration space populated by two different systems. Similarly,
the time correlation function C(t) measures how many of all trajectories em-
anating from region A reach region B within a certain time t. These two sets
of trajectories fill different volumes in path space and the time correlation
function C(t) corresponds to the ratio of these two volumes.
Using this isomorphism one can compute C(t) by determining the re-

versible work required to confine the endpoints of pathways of length t orig-
inating in region A to region B. For this purpose one can employ mature
techniques developed for the estimation of free energy differences, such as
umbrella sampling [4] or parallel tempering [38,39] to mention just two pop-
ular and powerful methods. In contrast to other approaches, transition path
sampling does not require any prior knowledge about the transition mecha-
nism in order to calculate rate constants. Therefore, transition path sampling
is the only viable route to study the kinetics of some complex system, for
which such knowledge is unavailable.

11.4 What Transition Path Sampling Cannot Do (Yet)

11.4.1 One and Two Point Boundary Problems

In this section we discuss some important limitations of the transition path
sampling methodology. One such limitation is that transition path sampling
cannot by applied to find the final state B if it is not known in advance. In



11 Transition Path Sampling 331

contrast to other methods discussed in this meeting (for instance, the contri-
butions by Tuckerman, Jónsson and Röthlisberger), transition path sampling
requires definition of both regions A and B. In other words, one must know
where the system is coming from and where it is going to. Thus, transition
path sampling solves the two point boundary problem, but it cannot be ap-
plied to accelerate the search for the final state B given that the system
starts in A. Once the final state B has been found with other methods, bias-
free dynamical pathways connecting A and B can be found and studied with
transition path sampling.

11.4.2 Chains of States with Long Time Steps

In principle, transition path sampling could be used to sample long-time
step pathways as discussed by Elber at this meeting. In this stochastic path
approach trajectories with time steps of up to 500 ps are determined by
minimization of an action functional [40,41]. The functional is obtained by
considering the distribution of errors one makes when integrating Newton’s
equation of motion with a finite time step. During the minimization of the
action the path end points are held at fixed positions and it is this constraint
that filters out all pathways which run into an instability (straightforward
MD simulations “explode” with large time step). Thus, shooting and shifting
moves, which rely on the propagation rules of molecular dynamics, cannot be
used to sample such ensembles of long time step trajectories
The long time step stochastic path method is a kind of transition path

sampling, similar to that suggested by Pratt [42]. But the precise form of this
algorithm applies an unphysical statistical weight for the pathways. Namely,
the single time step transition probability does not conserve the equilibrium
distribution. According to the long time step action functional, the dynamics
is that of a system with random forces, but without friction. Hence, the
fluctuation-dissipation theorem is violated and the system must heat up.
Now, one might hope of fixing the problem by adding a frictional term

to the action. Unfortunately, this fix by itself does not help much, because
integration algorithms for the Langevin equation conserve the canonical dis-
tribution only in the small time step limit. To conserve the equilibrium distri-
bution with large time steps, the transition probability for those steps must
obey detailed balance. One might think, therefore, that applying something
like Metropolis MC trajectories with large displacements should do the trick.
This thought may be part of the answer, but in practice, there is more to be
considered. If using atomic coordinates in a dense system, like the proteins
considered by Elber, large displacements will lead to overwhelming rejection
of trial moves.
Any systematic derivation of a large time step algorithm must ultimately

employ some type of coarse graining in time. High frequency components of
the motion must be integrated out. In so doing, however, it is natural to
imagine that space as well as time should be coarse grained. In that way,
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reasonable large time step transition probabilities have a chance of being less
than negligible. It is not obvious, of course, how to proceed in picking useful
coarse grained variables. These choices could be highly system dependent.
But for the purposes of this discussion, let us suppose that coarse graining
is done with a spatial grid that tiles space. The state of a grid cell will be
characterized according to the average configuration (and perhaps motion)
of atoms that fall within that cell over a coarse graining time Δt. A matrix of
transition probabilities can then be either estimated on physical grounds, or
perhaps calculated by transition path sampling of the atomic motions in a cell
and neighboring cells over that time period Δt. With a matrix of transition
probabilities assembled, long time steps method might then be applied with
reasonable efficiency. Future research will show if these ideas have any merit.

11.4.3 Pattern Recognition

Finally, we mention the problem of pattern recognition that exists for path-
ways whether coarse grained or not. As discussed in Sect. 11.3, insight into
the transition mechanism can be obtained by determining the transition state
ensemble. But while transition path sampling provides the algorithms to gen-
erate such an ensemble, its analysis is still based on a trial and error proce-
dure: one first guesses which parameters are relevant for the transition and
than verifies if one’s guess is correct by computing appropriate distribution
in the transition state ensemble. A systematic or automated way to identify
important variables would be highly valuable. Solution of this pattern recog-
nition problem would also aid characterization of stable states, which is far
from trivial in many complex systems.
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12 The Stochastic Difference Equation
as a Tool to Compute Long Time Dynamics

Ron Elber, Avijit Ghosh, and Alfredo Cárdenas

Department of Computer Science, Cornell University, Ithaca, NY 14850

12.1 Introduction

Molecular Dynamics (MD) simulations provide an atomically detailed de-
scription of complex systems on a wide range of temporal and spatial scales.
Despite numerous successes and many insightful observations, a clear limi-
tation of the MD approach is its short time scales. Routine simulations of
complex and large molecular systems at the atomically level of detail are
restricted to nanoseconds. This time scale is far too short to address many
interesting processes in biophysics, such as conformational transitions, trans-
port phenomena and reactions.
The focus of this manuscript is on a recently developed methodology [1–

3] that enables the calculation of approximate MD trajectories at extended
times scales. The method was already applied to investigate numerous sys-
tems [2–4], and we computed trajectories at times of nanoseconds [2], mi-
croseconds [3], and “milliseconds” [4]. The millisecond trajectories are highly
approximate, since a very significant fraction of the motions was filtered out
(see Sect. 12.3.3). Nevertheless, they provide a view of the reaction pathway
that is useful in interpretations of experimental data [4].
We use the term MD for a simulation technique that solves the classical

equations of motion at the atomic level of detail. We assume that an atom-
ically detailed potential is available (we use empirical potentials, but other
approaches can be used as well). The dynamics on the energy surface is de-
scribed by classical mechanics (Newton’s law). The discussion is limited to
dynamical models and differential equations that directly follow from micro-
scopic parameters. For example, this is to be contrasted with the Langevin
equation that requires a phenomenological friction constant. The friction con-
stant, which significantly affects the dynamics, is not a microscopic parame-
ter. As a result there is no clear limiting procedure that systematically leads
from the results of the model (e.g. the Langevin equation) to the solution of
the mechanical equations of motion.

12.2 Molecular Dynamics

We start with a brief review of existing well-established approaches, while
emphasizing the current limitations.

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 335–365, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



336 Ron Elber, Avijit Ghosh, and Alfredo Cárdenas

12.2.1 Initial Value Formulation

The initial value formulation of classical dynamics (The Newton’s equations
of motion) is the most widely used numerical procedure:

M
d2X

dt2
= −∇U (12.1)

Throughout the text a lower case (e.g., x, y, or z) denote scalar variables,
while uppercase variables (e.g. X,Y, Z) denote vectors. In the above formula
M is the mass matrix, X the coordinate vector, t the time and U the poten-
tial energy. A successful (and simple) algorithm to solve (12.1) is the Verlet
algorithm [5]. In the “velocity” form, it reads:

Xi+1 = Xi + ViΔt−
(
Δt2/2

)
M−1dU/dXi

Vi+1 = Vi − (Δt/2)M−1 [dU/dXi + dU/dXi+1]
(12.2)

A trajectory is obtained after specifying two initial conditions, the coor-
dinates, X (t = 0) ≡ X0, and the velocity vector, V (t = 0) ≡ V0. The size of
the time step is restricted since steps larger than a few femtoseconds result in
numerical instabilities. To obtain long time dynamics many small time steps
of size Δt are required (e.g. to reach a few nanoseconds millions of steps are
required). The necessity of using small time steps is the major obstacle in
computations of long time dynamics with the initial value formulation.

12.2.2 A Boundary Value Formulation in Time

Another well established formulation of classical mechanics (which is, of
course, equivalent) is based on a boundary value problem. We seek a sta-
tionary solution of a functional of the path, S [6]

S [X (t′)] =

t∫

0

L · dt′

L =
1
2

(
dX

dt′

)T

M

(
dX

dt′

)

− U (X) (12.3)

In (12.3) the two end points, X (0) and X (t), are held fixed and so is
the total time t. It is possible (in principle) to solve (12.3) numerically by
discretizing the integral and computing the stationary discrete path (S now
is a function of the set {Xi}N

i=1)

S
[
{Xi}N

i=1

]
= Δt ·

∑

i=0,..,N

1
2Δt2

(Xi+1 −Xi)
T
M (Xi+1 −Xi)− U (Xi)

(12.4)
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Solving (12.4), (i.e. finding a trajectory that makes S stationary), is an
alternative to solving the initial value problem (12.2). Equation (12.4) has a
certain philosophical appeal since it provides a global solution of the whole
path instead of (12.2) that provides a sequence of local solutions in time.
There is a hope that having a global view of the classical trajectory will yield
more robust and stable solutions as a function of step size.
A support for the “philosophical appeal” is the application of an integral

in (12.4) while in (12.2) we use derivatives. Numerical estimates of integrals
are in general more accurate and more stable compared to estimates of deriva-
tives. On the other hand, computations of the whole path are more expensive
than the calculation of one temporal slice of the trajectory at a time. The
computational efforts are larger in the boundary value formulation by at least
a factor of N (where N is the number of time slices) compared to the ini-
tial value approach. To make the global approach computationally attractive
(assuming that it does work) the gain in step size must be substantial.
The hope is then that (12.4) may be a useful alternative to initial value

solvers if approximate long time trajectories are desirable. However, the use
of (12.4) “as is” is problematic. One problem is that even in (12.4) we need
an estimate of (first order) derivatives of the coordinates with respect to
time. Here, the estimate is based on a finite difference. The finite difference
estimate is of poor quality as the time step increases, and it leads to numerical
instabilities even in the integral formulation.
Another problem in computing a classical trajectory with (12.4) is that

the stationary condition on S does not imply a minimum or a maximum;
finding a saddle point can be significantly harder. Finally, if we are after
large time steps, the functional above can change from being a minimum to
being a maximum as a function of the step size. This is not a desired property
for a function to be minimized!
To exemplify the above problems with a simple example, it is instructive

to use one-dimensional harmonic oscillator:

S
[
{xj}N

j=1

]
= Δt ·

∑

j=0,..,N

(
1
2
M
(xj+1 − xj)

2

Δt2
− K
2
x2j

)

(12.5)

The stationary condition on the function S is

1
Δt
∂S/∂xk =

M

Δt2
[(xk − xk+1) + (xk − xk−1)]−Kxk = 0

(
2M
Δt2

−K
)

xk − M
Δt2

(xk+1 + xk−1) = 0 (12.6)
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Guessing a solution of the type xk = x0 exp [−ikω] (i =
√−1), we have

(
2M
Δt2

−K
)

− 2M
Δt2

cos (ω) = 0

(

1− K ·Δt
2

2M

)

= cos (ω) (12.7)

It is obvious that we obtain a stability condition that is not much differ-
ent from the stability condition of the initial value equation. If Δt is larger
than 2 ·√M/K, the solution grows exponentially and is numerically unsta-
ble. Hence, in the straightforward boundary value formulation of classical
mechanics, we gain very little in terms of stability and step size compared to
the solution of the initial value differential equation. The difficulty is not in
the “philosophical” view (global or local) but in the estimate of the derivative,
which is approximated by a local finite difference expression.
It is also possible to demonstrate a shift from a maximum to a minimum

for S. The diagonal elements of the second derivative matrix of the action,
∂2S/∂x2k =

( 2M
Δt2 −K

)
, are changing their sign. They are positive at small

Δt and become negative at sufficiently large Δt.
Of course, it is not reasonable to expect that oscillations with a frequency

ν will be reproduced accurately with a time stepΔt larger than π/ν. However,
there is a difference between an accurate representation and being blown out
of the roof. An attractive alternative (if possible) is the removal of modes
that change significantly on a time scale shorter than Δt.
Consider for example a two dimensional harmonic oscillator. Instead of

(12.5) we now have:

S
[{xj , yj}N

j=1
]

= Δt ·
∑

j=1,..,N

(
1
2
M
(xj+1 − xj)2

Δt2
+
1
2
M
(yj+1 − yj)2
Δt2

− Kx

2
x2j −

Ky

2
y2j

)

Kx � Ky (12.8)

The frequency along the x direction,
√
Kx/M , is set to be much larger

than the frequency of the oscillation along the y coordinate,
√
Ky/M . How-

ever, we cannot increase the time step, Δt. The use of a time step appropriate
for the y direction will cause numerical instability in the x direction, and in
the overall solution. In the above trivial case simple filtering of x (xj = 0 for
all j) enables exact solution of y. Of course, in (12.8) there is no coupling be-
tween the two coordinates. If coupling is important, freezing high frequency
modes can provide (at best) only an approximate solution.
It is possible to use multiple sizes of time steps to integrate separately

along x and y axes [7–9]. However, this procedure requires the prior identifi-
cation of the fast and the slow modes, i.e. we need to know which modes to
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integrate with small time steps and for which modes it is possible to employ
the more economic larger time steps.
The identification of fast coordinates can be difficult in simulations of

condensed phases. Some of the fast modes are bond or angle vibrations that
can be identified and integrated separately. However, other fast modes are
transient. They are fast for a short duration of time and slow otherwise.
The transient fast modes are collisions, e.g. two atoms that are close and
feel strong repulsive forces due to excluded volume interactions. The relevant
degree of freedom (the distance between the atoms) is a fast mode during the
collision event and a slow mode before or after the short collision period. The
fundamental complication in the treatment of these modes is the “identity
crisis” of these fast/slow coordinates.
Earlier studies suggest a special treatment to a collision coordinate as a

fast coordinate that is turned on and off [10]. Transformations of collision
coordinates to forms more appropriate for strongly or weakly interacting
coordinates were used in the framework of a mean field approximation. How-
ever, tracking down collision events and treating them in a special way is
computationally expensive. It cannot be done in practice for more than a few
collision events at the same time. Since the number of collisions at a given
time slice is proportional to the number of atoms in the system, it is difficult
to come with a general scalable tracking scheme that will be independent of
the system size. Moreover, as the size and the density of the system increase,
three and four body collisions (that are not considered in the above scheme
[10]) may be relevant as well.
Our goals are therefore two:

(a) We seek a “stable” treatment of the fast modes (on the scale of Δt) and
approximate description of slow modes. We hope that the simplification
done for the rapid displacements will still produce sound description of the
slow motions.

(b) We seek a formulation in which we will not need to identify (to begin
with) what are the slow and the fast degrees of freedom. Hence we seek an
automated “stabilizing” algorithm.

To achieve (a) and (b) a new model is required.
We note that we cannot expect to do better than the goals outlined above

when a large time step is used. Without detailed small-time-step integration,
it is indeed impossible to follow fast motions. So “stabilizing” the modes with
frequencies higher than π/Δt is the best we could hope for.
Before the formulation of an alternative model, we consider yet another

boundary value formulation that will be of considerable interest to us later
on.
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12.2.3 A Boundary Value Formulation in Length

A classical trajectory is a curve in Q dimensional space (where Q is the num-
ber of degrees of freedom). The discussion so far considers the parameteriza-
tion of the curve as a function of time, X(t). However, this parameterization
is clearly not unique, and we may choose to distribute the points along the
curve in other ways, and more specifically in a computationally more con-
venient way. Another well established protocol in classical mechanics, which
we consider here, parameterizes the curve, X(l), as a function of the path
length, l [6].
It is convenient at this point to change to mass weighted coordinates

Z =
√
MX. The Lagrangian in (12.3) is now modified to

L =
1
2

(
dZ

dt

)2

− U(Z)

The usual formulation of the action as a function of length has fixed end
points, fixed total energy and variable length and time.

SL [Z (l′)] =

Z(l)∫

Z(0)

√
2(E − U) · dl′ (12.9)

The total energy in (12.9) is denoted by E. One of the advantages of
(12.9) with respect to (12.3) is that the total time of the trajectory is an
output (versus an input). The energy can be estimated from equilibrium
considerations. For example, the total kinetic energy K ≡ E −U may be set
to QkBT/2, where Q is the number of degrees of freedom. The total time can
be recovered from the stationary path with length parameterization as

t =

Z(l)∫

Z(0)

dl′
√
2(E − U) .

A discrete version of (12.9) can be optimized in a similar way to (12.4).

SL

[{Zj}N
j=1
]
=

∑

j=1,..,N−1

(
1√
2

[√
E − U (Zj)+

√
E − U(Zj+1)

]

|Zj−Zj+1|
)

(12.10)
The first and the Nth coordinate sets are fixed. Another advantage (be-

sides switching from constant time to constant energy) is the elimination of
time derivatives. A finite difference estimate remains (the length element,
Δl′ ∼= |Zj − Zj+1|). However, since the configurations are equally distributed
along the path, the length element behaves better than the finite difference
estimate of the velocity. For example, the distance between two points pro-
vides a lower bound to the true length of the path. No such bound is available
when estimating velocity.
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The action, SL, in (12.10) is not necessarily a minimum making the com-
putation of the stationary path a non-trivial challenge. We have tried to use
(12.10) in a straightforward way but finally gave up [11]. A variant on (12.10)
within the framework of the stochastic difference equation (Sect. 12.3.6) is at
present our most promising approach.
To conclude the discussion on the length dependent action we note that

an initial value differential equation as a function of length also exists [6] and
is

d2Z

dl2
= − 1

2(E − U) (∇U − (∇U · t̂ )t̂ ) (12.11)

where t̂ is a unit vector in the direction of the trajectory. This second order
differential equation resembles the Newton’s equation of motion. It includes
a force component only in the direction perpendicular to the path and an
effective “mass” of 2(E − U).

12.3 The Stochastic Difference Equation

12.3.1 Stochastic Difference in Time: Definition

The expression, which we derive below, leads to an action and to a stationary
(minimum) condition on the classical path. The optimal path is a discrete
approximation to a classical trajectory. Interestingly, in the integral limit (an
infinitesimal time step), the action below was used already by Gauss (!) to
compute classical trajectories [12]. At variance with Gauss we keep a finite
Δt.
Despite the similarity to the Gauss approach to classical mechanics, there

is a key difference between the classical actions described above, and the
corresponding action of the Stochastic Difference Equation. The classical ac-
tions are deterministic mechanical models; the SDE is a non-deterministic
approach that is based on stochastic modeling of the numerical errors.
Computer simulations are (obviously) using a finite time step. Consider a

finite difference approximation to the Newton’s equations of motion (12.1)

M
Xi+1 +Xi−1 − 2Xi

Δt2
+
dU

dXi
= εi+1 (12.12)

The new feature in (12.12) is the use of an error vector, εi+1. Even if the
trajectory we have at hand {Xi}N

i=1 is exact, the left hand side of (12.12) will
not be zero. This is since a finite difference is used to approximate the second
derivative of the coordinate vector as a function of time. In straightforward
Molecular Dynamics simulations the time step, Δt, is taken to be small with
the hope that the errors (which we denoted by εi+1) can be neglected. Usually
we do not know what the errors are, since we do not have the exact trajectory.
Therefore ignoring the errors for small Δt s seems like a reasonable idea. In
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the SDE approach we attempt to model these errors. This allows us (in
principle) the use of larger time steps.
It is important to emphasize that the errors so calculated are with re-

spect to the exact trajectory. The computational procedure for the errors
is as follows: We have an exact solution of the Newton’s equation of motion,
{Xi}N

i=1, (an analytic or numerical solution). The exact solution is plugged
into (12.12) to produce estimates of the errors due to the use of an approx-
imate formula (finite difference estimate of second derivatives). The errors
so obtained are therefore not the deviation of an approximate solution from
the exact solution. Here the errors estimate the accuracy of a finite difference
formula, tested on the exact trajectory. Of course if we solve (12.12) we will
have a trajectory that is different from the exact solution, and we may use
(12.12) to measure this difference.
The distribution is a property of the exact trajectories. If we generate

an approximate trajectory based on the finite difference formula, we should
generate error distribution that is consistent with what we know about the
true solution.
Note also that the error is evaluated at the upper edge of the interval.

The use of the edge for the error calculation is for computational convenience
(as discussed below) and should not affect the results. There is an ambiguity
about the placement of the error vector that adds interesting complications
to the derivation below, and led to some unnecessary anxiety by other re-
searchers in the field. Since we are developing a new statistical model we
have the liberty of defining our model at our convenience. Why this choice is
indeed convenient will become clearer in Sect. 12.3.2.
We have performed numerous numerical experiments on the properties

of the errors. Some of these studies are described in reference [2]. We have
performed a few more for the present article. A few experiments are presented
below
Based on the numerical experiments we suggest the following two basic

assumptions to be used in the error modeling:

(i) The errors are considered stochastic variables, not correlated in time. Or,
more explicitly:

〈εi〉 = 0; 〈εiεj〉 = Cδij (12.13)

(ii) The probability density of the norms of the error vectors is assumed
Gaussian.

P (εi) =
√
1/2πσ2 exp[−ε2i /2σ2] (12.14)

Assumption (ii) is for convenience only. In fact the formalism can be used
for any functional form of the probability density of errors provided that the
first assumption is satisfied.
We have no “proof” that the above two assumptions are true. All we have

are numerical experiments on systems that vary from a dipeptide to a small
solvated protein. Our results suggest that the above assumptions are sound
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Fig. 12.1. Distribution of norms of the error vectors computed by the finite differ-
ence formula (12.12) from exact trajectories of valine dipeptide. The dipeptide was
initially equilibrated at 300K. The largest errors are significant and are of the same
order of magnitude as the forces.

for sufficiently large time step. We note that at the limit of small Δt s, in
which we obtain “an almost” exact result, the (much smaller) errors become
correlated. For the statistical assumption to be valid the time step needs to
be sufficiently large so that correlations will decay rapidly. A few numerical
experiments for different step sizes are presented in Fig. 12.2.
Are the results of the numerical experiments surprising? Let us examine

first the second assumption and assume for the moment that the correlation
is lost rapidly, is the normal distribution a surprise? It is not. It is a simple
demonstration of the Central Limit Theorem (CLT). For sufficiently large
systems, and after ensemble average, the addition and averaging of the (un-
correlated) elements of the error vector lead to a normal distribution. Note
also that the first and second moments of the errors are bound if the coordi-
nates of the exact trajectory are bound (as they are in practical condensed
phase simulations). Therefore the conditions for the application of the CLT
are satisfied.
Is it a surprise that the correlations diminished rapidly? If Δt is very

small then the two terms, the estimate for the second derivative of the co-
ordinate with respect to time and the force are comparable (along the ex-
act trajectory). As Δt is made larger the force contribution (and the er-
rors) are made larger as well. At very large Δt (maximum errors) the er-
ror correlations become the correlation of the forces computed at time
separation Δt (without short time integration). The forces are changing
significantly on the time scale of Δt and their discrete average Cdis(τ) =
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Fig. 12.2. The correlation of errors 〈(ε(t) · ε(0))/(ε(0) · ε(0))〉 estimated from exact
trajectories of valine dipeptide and (12.12) for three different time steps.

(1/N)
∑

i F (τ+ iΔt) ·F (iΔt) decays significantly faster than the correspond-
ing integral Cint(τ) = (1/t′)

∫ t′

0 F (t) ·F (t+ τ)dt. The integral is known from
statistical mechanics to decay quite rapidly. It is sometimes used to estimate
the friction kernel and the memory function of the generalized Langevin
equation. In the Langevin formulation the extreme view is taken that the
correlation function is Cint(τ) ≈ C0δ(τ). This is somewhat similar to our
(weaker) assumption for Cdis(τ). It is important to emphasize, however, that
our model is different from the Langevin equation, which is a stochastic dif-
ferential equation. Our model has no noise at the limit of small time steps
in which the numerical errors approach zero. The “noise” we introduce is nu-
merical. Our noise is not attempting to model extra degrees of freedom (we
maintain all the degrees of freedom), or to produce different ensembles. It is
a noise introduced when we approximate a differential equation by a finite
difference formula.
An obvious limitation of the above argument is that it applies only for

“sufficiently” large systems and a “sufficiently” large time step. How large is
sufficient requires numerical experiments. In our experience, the dynamics of
valine dipeptide with 42 degrees of freedom and a time step of 10 femtosec-
onds already shows the desired properties (Figs. 12.1 and 12.2). Considerably
“nicer” Gaussian curves were obtained for yet larger systems (folding of C
peptide [2]). It is therefore pointless to test the above assumption on model
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systems that are not ergodic even if we love them very much (like the one
dimensional harmonic oscillator). The conditions for applying the CLT are
clearly not satisfied in these cases.
A final comment on the model: in the applications that were pursued so

far [1–4] we assume that the variance, σ2, is a time independent scalar. There
is no theoretical or computational restriction to make it so, and a potential
extension to the model may make the variance a time dependent tensor.
The current choice is based on insufficient data to fit, rather than on true
conviction of simplicity.

12.3.2 A Stochastic Model for a Trajectory

If the above model of errors is accepted we can proceed to examine the
statistical properties of trajectories. For example, what is the probability of
obtaining a sequence of errors, {εi}N

i=1 in N time slices of an exact trajectory?
Since the errors are assumed independent of each other we have

P̄
(
{εi}N

i=1

)∏

j

dεj =
∏

i

P (εi)dεi (12.15)

If the errors are zero, we obtain the most probable trajectory within the
framework of the stochastic difference equation. This trajectory is not exact
and is within a distance σ from the exact trajectory (12.12). What are the
approximations made? In Sect. 12.3.3 we argue that the approximate trajec-
tory is a solution of the slow modes in the system where the high frequency
modes are “stabilized”, or filtered out.
Focusing on (12.15), it is more useful to write the probability in terms of

coordinates (instead of errors).

P̄
({εi}N

i=1
)∏

j

dεj =
∏

i

P

(

εi ≡MXi +Xi−2 − 2Xi−1

Δt2
+
dU

dXi−1

)

×

×
[
∏

k

dXk

]

det
[

Jij ≡ dεi
dXj

]

(12.16)

The determinant at the right side is the Jacobian of transformation from
the error vector to the coordinate vector. More explicitly, the Jacobian of the
transformation is:

det
[
dεi
dXj

]

=

⎡

⎢
⎢
⎣

∂ε1/∂X1 ∂ε1/∂X2 ∂ε1/∂X3 ...
∂ε2/∂X1 ∂ε2/∂X2 ∂ε2/∂X3 ...
∂ε3/∂X1 ∂ε3/∂X2 ∂ε3/∂X3 ...
... ... ... ...

⎤

⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎣

M/Δt2 0 0 ...[
−2M
Δt2 +

d2U
dX2

1

]
M/Δt2 0 ...

M/Δt2
[
−2M
Δt2 +

d2U
dX2

2

]
M/Δt2 ...

... ... ... ...

⎤

⎥
⎥
⎥
⎥
⎦
=
(
M

Δt2

)N

(12.17)

Expressing the determinant in (12.17) we find that only the diagonal
terms remain, since the upper off-diagonal part of the determinant is zero.
The final result is coordinate independent. This is the most convenient choice
and the motivation behind the error placement at the edge of the interval.
Placing the error at the center will introduce the second derivatives of the
potential to the Jacobian that will make it coordinate dependent and more
expensive to compute.
The ambiguity in the choice of the Jacobian is well known from path

integral studies [13]. There the choice is made based on the physics that we
wish to present. There is no “correct” or “wrong” choice before a concrete
physical model is introduced. Our freedom in defining the errors we just
created, allow us to make the most convenient choice.
Note that the boundary conditions implicitly written into the determinant

requires the knowledge of (fixed) X−1 and XN+1. Our model as outlined be-
low is leading, at the limit of small Δt, to a fourth order differential equation
in time that requires four initial or boundary values. In our experience fixing
only pair of coordinates (optimizing also the velocities at the boundaries)
affects very little the overall results when a large time step is used.
The probability density of a trajectory can then be written:

P
({X}N

i=1
)
= A

∏

i

exp
[
ε2i
2σ2

]

(12.18)

= A
∏

i

exp

[

− 1
2σ2

(

M
Xi+1 +Xi−1 − 2Xi

Δt2
+
dU

dXi

)2
]

= A exp

[

− 1
2σ2

∑

i

(

M
Xi+1 +Xi−1 − 2Xi

Δt2
+
dU

dXi

)2
]

= A exp

[

− 1
2[σ2 ·Δt]

∑

i

Δt

(

M
Xi+1 +Xi−1 − 2Xi

Δt2
+
dU

dXi

)2
]

where A is the normalization factor that is coordinate independent. The last
trick of dividing and multiplying byΔt is not necessary from a computational
viewpoint but makes the sum approach a limit at small Δt. We define now an
“action” SSDET for the Stochastic Difference Equation in Time. A trajectory
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that minimizes SSDET is an approximation to the true classical trajectory.

SSDET

({Xi}N
i=1
) ≡

∑

i

Δt

(

M
Xi+1 +Xi−1 − 2Xi

Δt2
+
dU

dXi

)2

SSDET →
Δt→0
N→∞

(N−1)Δt∫

0

dt′
(

M
d2X

dt′2
+
dU

dX

)2

≡ SG (12.19)

The last limiting expression is the Gauss action, SG, for classical mechan-
ics. It clearly has a minimum that satisfies the equations of motion (when the
action is zero). The action is non-negative, which makes it easier to identify
the true minimum. The non-negativity is an important difference from the
classical action formulation that we introduced at the beginning and makes
the calculations with the SSDET and SG significantly more stable. As we
show in the next section (Sect. 12.3.3) the approximate trajectories that are
produced by optimization of SSDET are stable. They have been “stabilized”
by filtering out frequency components higher than π/Δt.
A complication we should keep in mind when comparing SG to the usual

classical action is that the Newtonian trajectory is not the only stationary
solution of the Gauss action. A standard variation of (12.19) leads to a fourth
order differential equation and hence to two more solutions (that are related
by a time reversal operation) in addition to the true classical trajectory.
An example was discussed in details in reference [1] (see discussions and
equations (15) and (16) of reference [1]). The good news is that the true
trajectory is still the global minimum (when the action is zero), which is a
clear computational guideline. However, the possibility of being trapped at a
wrong minimum solution exists.

12.3.3 “Stabilizing” Long Time Trajectories,
or Filtering High Frequency Modes

In this section we attempt to address the question: what does an optimal
SSDET trajectory, computed with a large time step, mean? We consider the
simplest trajectory with just one error term, {ε(X1, X2, X3)} (X1 and X3 are
fixed), which we attempt to optimize. The action SSDET takes the simple
form SSDET = Δt · ε2. To appreciate the consequences of this approximation
in which only a single intermediate structure describes the trajectory we
consider an exact alternative. The action of the stochastic difference equation,
SSDET , becomes exact at the limit of the Gauss action, SG. But then we
need to perform an integral over a continuous trajectory, X (τ), for which we
require a representation.

SG =

2·Δt∫

0

ε2[X(τ)]dτ (12.20)
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We write the exact trajectory, X(τ), as a sum of two terms: (i) a parabolic
approximation and (ii) a Fourier series. The argument below can possibly
made simpler (without the use of the Fourier series). However, we wanted
to demonstrate the filtering effect. The parameters for the parabolic interpo-
lation are extracted from the three coordinate sets: {X1, X2, X3}, such that
the parabola will pass through the three points. The Fourier series takes care
of the deviation of the parabolic trajectory from the exact path. We write

X(τ) = aτ2 + bτ + c+
∑

n

αn sin(ωnτ)

a = (X1 +X3 − 2X2)/(2 ·Δt2)

b = (4X2 − 3X1 −X3)/(2 ·Δt) (12.21)

c = X1

ωn =
nπ

2 ·Δt n = 1, 2, 3, ...

The condition on ω is a result of the fixed boundaries at X1 and X3,
forcing the Fourier series to vanish at the edges of the interval τ ∈ [0, 2 ·Δt].
The αn parameters are determined by minimization of SG similarly to the
determination of the coordinate vector {X2}. With the exact representation
of the trajectory, the next step is to perform the integral that defines the
Gauss action in (12.20). It would be great if the integral could have been
performed analytically. The remaining task would have been the optimiza-
tion of the exact action as a function of all the parameters. So far we only
used approximate discrete functionals. Unfortunately, the present case is not
different from previous attempts. The force, which in general is a non-linear
function of the coordinates, makes it impossible to do the integration exactly.
Instead of trying the impossible (searching for an exact expression of SG)

we consider an intermediate case. We use the exact representation of the
trajectory, but employ the same approximation of the force that we use in
the SSDET algorithm (12.19). We evaluate the force only once at the middle
of the time interval (i.e. at τ = Δt) and set it to depend only on X2. The force
will depend only on X2 if the Fourier series will vanish at that time, which
implies that ωn = nπ

Δt n = 1, 2, 3, ... in contrast to the general formulation
in (12.21).
We then examine what are the implications of this approximation on

the high frequency components of the trajectory (ω ≥ π/Δt). Substituting
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(12.21) into (12.20), we have

SG =

2·Δt∫

0

dτ

(

c−
∑

n

αnω
2
n sin(ωnτ) +

dU(X(τ))
dX

)2

SG ≈ S̄G =

2·Δt∫

0

dτ

(

c−
∑

n

αnω
2
n sin(ωnτ)− F (X2)

)2

(12.22)

The approximation we made is to use F (X2), force that depends only
on the time independent parameter X2 instead of −dU(X(τ))/dX. This is
exactly the same approximation that we use in SSDET . We have

S̄G = (c− F (X2))2 · 2 ·Δt− 2 · (c− F (X2))
∑

n

αnω
2
n

2·Δt∫

0

dτ [sin(ωnτ)]

+
∑

n,n′
αnαn′ω2

nω
2
n′

2·Δt∫

0

dτ [sin(ωnτ) sin(ωn′τ)] (12.23)

Since the integration is over complete periods of the trigonometric func-
tions we have

S̄G =

[

2 · (c− F (X2))2 +
∑

n

α2
nω

4
n

]

·Δt (12.24)

The optimal coefficients of the Fourier series are obtained by minimizing
the S̄G as a function of αn, which is trivial:

∂S̄G/∂αn = 2 ·Δt · ω4
n · αn = 0 → αn = 0 (12.25)

The conclusion from this small exercise is that using our approximate dis-
crete functional results in the disappearance of all the high frequency modes
in the system (faster than π/Δt). This is a feature that guarantees the sta-
bility of the solution in contrast to the previous formulation of functionals
in classical mechanics. In previous formulations the rapid motions lead to the
exponential growth in the coordinates if the time step was too large. The fil-
tering effect was demonstrated in reference [1] for the simple two-dimensional
harmonic oscillator. Numerous numerical examples of more complex systems
could be found in other publications. In the present article we demonstrate
the filtering for the length parameterization discussed later (Fig. 12.7).
The filtering may seem trivial since it is a direct result of the implementa-

tion of the algorithm. It is therefore useful to contrast it with the behavior of
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initial value solvers. There the high frequency modes (that are not removed)
contribute to exponential “blow-up” of the solution.
The effect of filtering high frequency modes on the slow modes is not

obvious and requires experimentation. While the studies in references [1],
and the computational examples in Sect. 12.4 look promising we are not
done yet. More experimentation and experience will clarify the limits of the
present approach, and when it is expected to fail. Below we describe one
known failure.
While stabilizing the solution by filtering out high frequency modes may

sound like a good idea, there is an important class of problems for which the
approximate trajectory misses crucial information. Consider a model with Q
degrees of freedom that moves in a potential of the form (a system with two
wells)

U(X) = ax21 −A exp [−x21] +
∑

i=2,...,Q

kx2i + γx1xi γ � a, k (12.26)

At total energies significantly larger than A, transitions between the wells
should be observed. If in addition the average energy (per degree of free-
dom) is smaller than A, the dynamics is activated. The system remains for a
substantial length of time at one of the wells, where it executes (rapid) oscilla-
tions with a time scale δt1. Rarely, (a time scale of τ2), another rapid motion
occurs; a transition from one well to the other at a time scale δt2. Both high
frequency motions, the oscillations in the well, and the rapid jumps between
the wells, are filtered out when a large step, Δt, is used (τ2 � Δt� δt1, δt2).
The observed SSDET trajectory will have the system at rest at one well
followed by a sudden appearance of the system at the second well without
intermediate points (note Δt � δt2). Hence, not only we removed the lo-
cal quasi-equilibrium and fast small-amplitude vibrations in the wells, but
we also filtered out rare transitional events with large spatial amplitudes.
Clearly, we are usually interested (at least) in the dynamics of the transition.
A fix to the excessive filtering in the framework of SSDET is not obvious.

Rare and large spatial transitions can be detected by sudden and significant
changes in the system coordinates in a single Δt step. This specific time
interval can be divided into smaller time slices to obtain a refined dynamic
picture. However, such refinements require clear separation of time scales,
and identification of relevant modes. Note that one of the major advantages
of SSDET is the automated filtering of all rapid modes with no need to specify
them in advance. The price we pay is the restriction of the present approach
to diffusive motions over many low barriers, or over a few identifiable wells
separated by high barriers.

12.3.4 Weights of Trajectories and Sampling Procedures

At this point we may continue in one of two directions. We may use a sin-
gle approximate trajectory at the neighborhood of the exact trajectory; i.e.



12 Stochastic Difference Equation for Long Time Dynamics 351

the trajectory that was obtained by the minimization of the discrete action.
Alternatively, we recognize that the exact trajectory deviates from the op-
timal trajectory by errors distributed normally. We may sample errors (and
plausible trajectories) from the appropriate distribution of coordinates in the
neighborhood of the trajectory with filtered high frequency modes. The sam-
pling in the neighborhood of the optimized trajectory should add to one (we
approximate one trajectory):

∫

P ({X}N
i=1)

∏

k=2,...,N

dXk =
∫

A exp
[

− SSDET

2[σ2 ·Δt]
] ∏

k=2,...,N

dXk = 1

(12.27)
where A is the normalization constant. The above expression suggests that
the weight of a single trajectory with fixed boundaries is exp

[−SSDET

2σ2Δt

]
. This

weight opens the way for the use of Molecular Dynamics or Monte Carlo
procedure to sample probable solutions to the boundary value problem.
We note that the exact trajectory should be within a distance σ

√
Δt from

the most probable trajectory with a large time step, Δt, underlining the need
for trajectory sampling.
Define the vector Y ≡ [X1, X2, ..., XN ] that includes the complete dis-

crete approximation for the trajectory. The action, SSDET , is a function of
Y . To generate the trajectory distribution with the above weight, we need to
create a canonical distribution with SSDET for an energy function and 2σ2Δt
replacing the usual thermal energy (kBT ). In our code MOIL [14] we imple-
mented a Molecular Dynamics protocol that solves the following Newton-like
equation:

d2Y

dη2
= −∇SSDET (12.28)

The parameter η is a fictitious time and the fictitious masses are set
uniformly to 1. The solution of (12.28) conserves the total energy of the
system where SSDET is the potential. To obtain a temperature of 2σ2Δt we
scale the velocities, dY /dη, periodically by a single factor λ [15]

λ ·
∑

i

(
dyi
dη

)2

= N ·Q · (2σ2 ·Δt) (12.29)

The scaling factor λ is chosen to satisfy (12.29). The number of time
slices is N and Q is the number of degrees of freedom in a single time slice.
The code in MOIL is producing complete trajectories in any of the η steps
following the dynamics of (12.28) and (12.29). The trajectories so obtained
have the appropriate Boltzmann-like weight.
We note that the code is running in parallel in a very efficient manner.

Implementations for loosely coupled clusters of PCs are available for LINUX
and Windows operating systems. In practice, the scaling with the number
of processors (linear), and the load balancing are excellent [3]. This is of
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course not surprising since the parallelization protocol is exceedingly simple
and consists of assigning different time slices to different CPUs [3]. Only
nearest-neighbor communications between the CPUs are required.
The above argument for the weight of trajectories holds for sampling tra-

jectories with fixed end points. The argument becomes subtler if we wish to
vary the starting and ending points and sample alternative trajectories. In
straightforward classical mechanics all trajectories with the same energy have
the same weight. In the present approximate formulation the total time (and
not the energy) is made fixed. The weight of different classical trajectories
(different boundary conditions) in SSDET can be estimated only approxi-
mately. There are two basic assumptions we have to make: the first is on the
total energy, and the second is on the kinetic energy.
In the first assumption we set the total energy, E, to be a constant during

the whole trajectory. This is correct in a true classical trajectory, but is
not exact in an SSDET path. In the same sense that we have errors in our
coordinates, we are likely to have errors in the energy as well. Nevertheless,
this is a useful constraint to have and is likely to make the trajectories more
realistic. Using the first assumption the trajectory weight is (for a thermal
system with an inverse temperature β), exp

[−βE − SSDET

2σ2Δt

]
.

Note that we change our philosophy here. If we allow different initial
conditions while keeping the total time fixed, we also must allow different
energies. We maintain, however, the same energy for one trajectory. The total
energy is then written as a sum of kinetic and potential energies (K = E − U)
and computed for every time slice during the trajectory. The calculation of the
energy for each time slice instead of the starting point makes the functional
more symmetric, and it should not matter if the energy is indeed conserved.
The functional becomes:

Sβ
SDET ≡ −βE −

SSDET

2σ2Δt
= − 1

2σ2Δt

∑

i

[2σ2 · (β/N)(Ki + Ui) + ε2i ]Δt

(12.30)
Estimating the total energy, E, of the current Sβ

SDET trajectory is however
difficult. The large time step that we employ makes it difficult to estimate
time derivatives of the type dX/dt (and the corresponding kinetic energy).
The paths we computed do not have enough information to estimate the
kinetic and therefore the total energy. We are therefore making a (second)
assumption. This time the assumption is on the kinetic energy.
The second assumption is that the average kinetic energy is roughly

thermal. We assume that
∑

i

(β/N)Ki
∼= Q/2 (12.31)

This assumption is not bad at all for sufficiently large microcanonical
systems and long trajectories. It is consistent with the numerical observation
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of the similarity between canonical and microcanonical ensembles for systems
with a few hundreds coupled degrees of freedom.
Using (12.31) we note that the kinetic energy is making no contribution to

the weight since the constant factor will disappear in the normalization. The
log of the weight of a trajectory with arbitrary starting and ending points is
therefore reduced to

Sβ
SDET ≡ −βE −

SSDET

2σ2Δt
= − 1

2σ2Δt

∑

i

[2σ2 · (β/N)Ui + ε2i ]Δt (12.32)

Note that (12.32) is leading to a very similar trajectory sampling protocol
as outlined in (12.28) and (12.29). We only need to change SSDET by the
modified action, Sβ

SDET of (12.32).
Of the above two assumptions, (i) constant total energy E, and (ii) ther-

mal average kinetic energy, the first one is the more difficult to justify. It
would be nice if we could enforce the energy conservation and still maintain
the simple properties of the SSDET formulation. The next formulation that
we shall discuss (the Stochastic Difference Equation in Length, SSDEL, Sect.
12.3.6) fixes the energy and is therefore a more natural procedure to sample
alternate initial conditions. There is no need to enforce energy conservation
as this property is already built in.

12.3.5 Mean Field Approach, Fast Equilibration
and Molecular Labeling

So far we discussed algorithms that with the addition of more computational
resources (more time slices) approach the exact answer. It is useful at this
point to introduce one physically based approximation that reduces signifi-
cantly the computational resources required. At least we can have it as an
option when the computational resources are limited. Perhaps a more sig-
nificant advance (for us) was the ability to solve the problem of molecular
labeling and proper solvent sampling.
The molecular labeling problem is as follows. Consider a solvated system

(e.g. a protein immersed in a box of water). To compute a SSDET path we
need to specify the initial and the final coordinate sets, X1 and XN . Some
of the coordinates are the spatial locations of water molecules. The coordi-
nates are required by classical mechanics, true; but the exact labeling of the
different water molecules creates a huge labeling degeneracy. All the permu-
tation of the water molecules will create identical trajectories. Moreover, a
slight perturbation in the solvent coordinate will create alternative trajecto-
ries that we are not interested in. Our prime interest is in the dynamics of
the protein and less in the dynamics of the water molecules.
Here we proposed a physically based approximation to get around this

problem. We separate the coordinate set X into two domains: Xslow and
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Xfast, where the “slow” and “fast” are with respect to the rate of approach-
ing equilibrium. For example, we argue that the translation and rotation de-
grees of freedom of a bulk water molecule relax to equilibrium more rapidly
than the protein dihedral angles (φ, ψ)i of an amino acid i.
We assume separation of (equilibration) time scale that can be done only

if the properties of the system are reasonably well understood. Proceeding
with the example of a solvated protein, we set the water coordinates to be
Xfast, and the protein coordinates to be Xslow. Consider a time step, Δt,
that is significantly longer than the relaxation time to equilibrium of the fast
part but is still slow on the time scale of relaxation to equilibrium of the slow
part.
In the above-mentioned example, the time scale of one hundred picosec-

onds is probably in that range. It is significantly longer than the local ori-
entation and translation relaxation of the water molecules but too short to
allow complete relaxation of the protein dihedral angles. If such a time step,
Δt, is used in SSDET calculation it eliminates the need to follow the explicit
dynamics of the water molecules. On this time scale, in a single step, the wa-
ter molecules will already relax to equilibrium (with a “frozen” configuration
of the slow protein). Their explicit dynamics will become irrelevant.
The consequences of the above picture for the SSDET calculation are:

Instead of following the explicit dynamics of all the degrees of freedom in X,
we follow the explicit dynamics only of Xslow and we thermally average the
action (for each time slice) over the Xfast coordinates.

〈SSDET 〉Xfast=
∑

i

Δt

〈(

MslowX
slow
i+1 +X

slow
i−1 − 2Xslow

i

Δt2
+
dU

dXslow
i

)2〉

Xfast

(12.33)
In the above average only the force depends on the fast coordinates. So we are

required to perform averages of the type
〈

dU
dXslow

i

〉

Xfast
and

〈(
dU

dXslow
i

)2
〉

Xfast

.

These averages are performed in practice by short molecular dynamics tra-
jectories for the fast components while keeping the slow components fixed at
their current time slice configuration. The average, 〈G(Xfast, Xslow)〉Xfast ,
of the function, G(Xfast, Xslow), over Xfast is computed as follows:

〈G(Xslow, Xfast)〉Xfast =
1
δt

δt∫

0

G(Xslow, Xfast(t)) · dt

Mfast d
2Xfast(t)
dt2

= −∇U(Xfast;Xslow) (12.34)

The molecular dynamics trajectory for Xfast is computed at fixed slow
coordinates and for time duration, δt, that is significantly smaller than Δt.
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In the calculations of folding of C peptide [2], of a conformational transi-
tion in hemoglobin [3], and of ion migration through the gramicidin channel
[Koneshan Siva and Ron Elber, submitted], the above averaging was used for
a selected set of slow coordinates. In these calculations we average the fast
coordinates for only tens of steps between sequential optimization steps of
the slow coordinates. While more extensive averaging of the fast coordinates
could help, this is what we can afford at present.
We also note that there is more than one choice of a function to average.

Besides the specific choice made in (12.33), SSDET , it is also possible to
average (over the fast coordinates) the weight, exp [−SSDET /2σ2 ·Δt], or
the force, −dU/dX. Of the three possibilities the last choice is equivalent to
generating a potential of mean force prior to the calculations of dynamics.
The direct use of a potential of mean force for peptides and proteins is another
direction that we currently pursue [16].

12.3.6 Stochastic Difference in Length

The stochastic difference equation in length is conceptually similar to the
stochastic difference in time. We therefore do not repeat all of the arguments
and discussions above. Rather we briefly list the main formulas and focus on
the differences between the two approaches.
Instead of starting from the Newton’s equation, we use the actions. In

the time formulation, we obtain the equation of motion by requiring that the
action is stationary, i.e., δS/δX(τ) = 0, or in the discrete approximation to
the path {∂S/∂Xi = 0}N

i=1 (see (12.4)). The SSDET action can be written in
that case as

SSDET =
∑

i

(
1
Δt
∂S/∂Xi

)2

Δt (12.35)

We are using a similar approach to define the analogous action for the
Stochastic Difference Equation in Length, SSDEL (SL is defined in (12.9))

SSDEL =
∑

i

(
1

Δli,i+1
∂SL/∂Zi

)2

Δli,i+1 (12.36)

The optimization of SSDEL is performed subject to the constraint that
all the lengths of the path segments, Δli,i+1s are the same. This is (of course)
equivalent to the requirement that the points are equally distributed along
the path. The constraint is conveniently formulated as a penalty function [17]

constraint =
λ

(N − 1)Q
∑

i

(Δli,i+1 − 〈Δl〉)2 〈Δl〉 = 1
N − 1

∑

i

Δli,i+1

(12.37)
In the above expression λ is a constant that is determined by experi-

mentation. Moreover, since the length element is computed in mass weighted
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Cartesian coordinates, Δli,i+1 = |Zi − Zi+1|, it is necessary to avoid overall
translations and rotations of individual length slices, Zi. Imposing linear con-
straints and solving for the corresponding Lagrange’s multipliers is a conve-
nient way of removing the rigid body motions [18]. The following constraints
are imposed on each length slice

∑

k

mk(Rik −RRk) = 0

∑

k

mk(Rik −RRk)×RRk = 0 (12.38)

The k index is running over the atoms in a single length slice i. The vector
Rik is of rank 3, and it provides the coordinates of a single atom, mk is the
mass of the k atom. The vector RRk is a reference coordinate system (the
coordinates of the middle intermediate structure).
The errors connected with the length formulation are defined as before.

An exact trajectory assesses the accuracy of the finite difference formula. The
choice of the finite difference formula to use is biased by the convenience of a
constant Jacobian of transformation from the errors to coordinates (see also
(12.12))

[ε(l)i+1]
T =

(
1

Δli,i+1
∂SL/∂Zi

)T

= 2(E − U(Zi)) · (Zi+1 + Zi−1 − 2Zi)T

Δl2i,i−1

− (dU/dZi)T · (1− (Zi − Zi−1)(ZT
i − ZT

i−1)/Δl
2
i,i−1) (12.39)

The statistical properties of the “length” errors are similar to the sta-
tistical properties of the “time” errors. This is demonstrated in the figure
below.
The overall similar behavior of the time dependent and the length depen-

dent errors suggest that a related modeling of trajectories can be used in the
last case. This is what we have done. It is also possible to show that the high
frequency motions (as a function of path length (!)) are filtered out similarly
to the removal of rapid motions as a function of time in SSDET . A legitimate
question is then why do we need yet another stochastic formulation? What
did we gain (or lose) by the alternative representation?
Below we list the good and the bad news:
One of the difficulties in the time formulation of the errors, which was

discussed earlier, is the filtering of fast transitional motions, (e.g. a transition
over an energy barrier). These are rare and rapid motions that may be of
considerable interest. In the time formulation they are removed since they
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are fast. In the length formulation the situation is different. These motions
are not of small amplitude, and the constraint of uniform distribution of
points along the path (12.37) ensure proper sampling of spatially significant
transitions.
A second point in favor is the use of energy conservation explicitly instead

of specifying the total time. The energy, as argued before in Sect. 12.3.4, is
easier to estimate since it requires only equilibrium observations (like the
temperature of the system). It is also nice to have the total time of the
process as an output (Sect. 12.2.3) instead as an input like in SSDET .
Moreover the sampling arguments of Sect. 12.3.4 become simpler con-

ceptually, and there is no need to make additional assumptions (beyond the
SDE formulation). The energy conservation of the trajectory is already built
in. The usual classical mechanics weight applies: Trajectories with the same
energy will have the same weight.
There is also some bad news. The integral that determines the time is

a weighted sum over the spatial path. Each Δl is the distance between
two sequential points and is the shortest path between them. If the step
in length,Δl, is large (i.e., only a small number of grid points is used), then
the overall length of the path is bound to be shorter than the length of the
true trajectory. The total time of the trajectory, which is an integral over
the path, and is an important variable, is likely to be too short. A way to

Fig. 12.3a. Distribution of errors extracted from exact trajectories of valine dipep-
tide and (12.39) at three different length steps. Note that the narrowest distribution
corresponds to essentially exact trajectory.
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Fig. 12.3b. Correlation function of errors extracted from exact trajectories of valine
dipeptide and (12.39) at four different length steps. Note that at the smallest length
step (in which the correlation persist for more than one angstrom) the errors are
very small and the trajectory is very close to exact. Hence, as we approach the exact
result, no filtering of high frequency modes occur, the errors become correlated and
the first assumption of the SDE approach is invalid. In practice, it means that there
is a minimal size of the step that can be used in the calculation.

get around this problem and obtain a sound estimate of the total time of the
trajectory is by statistical refinement, a procedure that is described in the
next section.
Another interesting feature of path parameterized by length is the non-

uniqueness of the solution. In the length parameterization we fixed the end
points and the total energy. If we consider periodic motions, any addition of
complete period will return us to the same end points (and of course the same
energy). Hence, it is possible to obtain very short (one period) trajectories
or infinitely long trajectories with infinitely many repeats of the periodic
motions. Depending on our initial guess and the extent of our annealing we
may hit trajectories with different total length and time, all of them are
legitimate solutions by the conditions we set.

12.3.7 “Fractal” Refinement of Trajectories Parameterized
by Length

The argument below is similar in spirit to the estimation of the length of
the coast of England [19]. The calculated length depends on the yardstick in
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which it is measured. The smaller is the yardstick the longer is the observed
length. The coast of England is therefore considered to be a fractal, for which
the total distance measured as described above, is increasing without limit.
For the classical trajectory at hand there is a limit and we define it to be
the length element, Δllim it. At this limit the solutions of the initial value
differential equation and the boundary value problem agree. It is typically
0.01Å.
The algorithm for trajectory refinement with prime purpose of determin-

ing the time of the trajectory is

(i) Initiate: Optimize SSDEL to obtain a path parameterized by length of
N intermediate points. We denote the path segment by Δl(1)i,i+1

(ii) Sample intervals: From the calculated path, sample at random a few
pairs of points (intervals), {Zi, Zi+1}i. The number of sampled intervals,
ξ, is much smaller than N to ensure computational efficiency. The process
below becomes exact when ξ is equal N but we usually do not go that far
(Fig. 12.4).

(iii) Refine selected intervals: For each of the ξ intervals compute an
interpolating trajectory with N intermediate points (i.e. compute length
dependent trajectories for all the {Zi, Zi+1}i pairs that are used for bound-
ary conditions and sampled in (ii)). The length of the path segment in this
refinement is denoted by Δl(n)

i,i+1 where (n) is the index of the refinement
cycle.

(iv) Examine the convergence of the newly generated path seg-
ments: Convergence is assumed when the path computed with the initial
value formulation (12.11) agrees within a threshold to the path created by
the optimization of SSDEL. If converged go to (vi)

(v) If convergence was not reached return to (ii): Sampling is now
done from the refined ξ segments. The sequential points that we sample,
{Zi, Zi+1}, are from the segments of the segments.

(vi) Convergence was reached. We have an estimate for the value of the
time integral (Sect. 12.2.3) for path of length {Δl(n)

i,i+1
≡ |Zi, Zi+1|}. Use

this estimate (and estimates from other length intervals) to calculate the
time length for an earlier refinement cycle with a length step Δl(n−1)

i,i+1 .

Repeat until the original length step, Δl(1)i,i+1, is reached.

After a few refinement cycles (a typical number is 5) the protocol above
converges in practice [16]. Path segments calculated with SSDEL or with the
initial value formulation ((12.11) with a step size, Δl(n)

i,i+1) are essentially the
same (Figs. 12.4 and 12.5)
An intriguing question is how much the spatial distribution of the tra-

jectories changes upon refinement? Do we need to refine the trajectories as
described above for all types of studies? Or is it possible to extract useful
information from paths with significantly lower resolution? This is a question
that will be addressed in the next section on numerical experimentation.
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Fig. 12.4a. A schematic drawing of the refinement procedure of an SDEL path.
Length segments are sampled and length dependent paths are computed (with more
intermediate points) for the selected segments. Convergence is assumed when the
criterion discussed in Fig. 12.4.b is satisfied.

Fig. 12.4b. Comparing the boundary value solution and the initial value formu-
lation for a segment of a refined SDEL path for valine dipeptide. At this level of
agreement we considered the refinement process complete.

12.4 Numerical Experiments

The present manuscript is mostly methodological, presenting the conceptual
framework behind the new technique of the stochastic difference equation. It
is therefore appropriate to discuss numerical examples of small systems for
which different aspects can be tested in greater details. On the other hand the
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Fig. 12.5. Refinement example of a trajectory along a coarse grained path for valine
dipeptide.

Fig. 12.6. A schematic drawing of valine dipeptide. Note that the only soft degrees
of freedom of this system are the rotations (ϕ, ψ) around the bonds as indicated by
the arrows.

numerical examples should be sufficiently complex so that non-trivial effects
could be observed. So, despite the fact that the techniques were already
applied to investigate much larger systems, we focus here on conformational
transitions of smaller systems: dipeptides.
Dipeptides are useful models for conformational transition of proteins.

They form “minimal models” on which protein backbone conformational
changes can be investigated. A schematic picture of valine dipeptide is shown
in Fig. 12.6. An extended atom model (CHn groups are treated as a point
mass) is used.
Glycine dipeptide has 11 extended atoms and valine dipeptide with its

larger side chain, 14 atoms. Nevertheless the backbone of the two peptides
is essentially identical. It includes only two soft degrees of freedom, the ϕ,ψ
dihedral angles. Other modes are too stiff to be significantly excited at room



362 Ron Elber, Avijit Ghosh, and Alfredo Cárdenas

temperature. It is therefore a common practice to describe the dynamics (and
thermodynamics) of dipeptides on a two dimensional ϕ,ψ energy maps.
The AMBER/OPLS force field is implemented in MOIL [4] and is used

throughout the calculations. No cutoffs were used for this small systems and
the 1-4 scaling factor were 2 and 8 for electrostatic and van der Waals inter-
actions. No constraints on fast vibration were used. However, the stochastic
difference equation filters the bond vibrations anyway. In Fig. 12.7 we com-
pare the energy content of the bond vibrations in SSDEL optimization with
different step sizes.
Another question of interest that we can examine in this small system is

the dependence of the paths on the number of length slices. In Fig. 12.8 we
present a comparison for SSDEL trajectories computed with 80, 320 and 640
number of grid points. The trajectories are shown on (ϕ,ψ) map, the two
relevant degrees of freedom, though the complete 33 degrees of freedom were
used in the calculations. The trajectories with different resolution in length
cover the same domains in conformation space.
Our trajectories are sampled with the help of simulated annealing pro-

tocol. But how can we test that the sampling is appropriate? One measure
that can help us to assess the quality of the simulation is the distribution
of the orientation of the initial momentum vector. If we sampled effectively
the space of initial conditions (by sampling complete trajectories) then the

Fig. 12.7. Bond energy distribution along the path for four different sizes of length
steps. The data is extracted from SDEL calculations of valine dipeptide. Note the
significant reduction of bond energies (filtering) as the step size increases.
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Fig. 12.8. Equatorial to Axial transition for glycine dipeptide using increasing
length size with SDEL. Note that the spatial distribution of configurations along the
trajectories remains similar at all resolutions. The main difference is the significantly
larger density of configurations near minima associated with incubation periods.

momentum vectors should cover all the orientation space. Or alternatively,
the initial vectors of the direction of the momentum will behave as random
vectors (with norm of one). In Fig. 12.9, we show the distribution function
of the scalar products of different (normalized) momentum vectors. The dis-
tribution for valine dipeptide is a combination of reactive and non-reactive
trajectories. While the distribution is not exactly a Gaussian it is not too far
from it. . .

12.5 Concluding Remarks

We have outlined a new numerical approach to compute approximate long
time molecular dynamics trajectories. We have explained the underlying as-
sumptions and the limitations of the present approach as well as its promise.
Numerical examples were shown for relatively small system for which detailed
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Fig. 12.9. Histogram showing the distribution function of the scalar product of nor-
malized initial momentum vectors for 21 reactive and 21 non-reactive trajectories
for valine dipeptide conformational change.

and extensive calculations can be performed. The research described in this
article was supported by grants from the NIH GM59796 and the NSF Grant
No. 9982524 to Ron Elber.
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13 Numerical Simulations of Molecular
Systems with Long Range Interactions
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13.1 Introduction

Numerical simulations require the summation of long range pair interactions
between the charges and/or dipoles of atoms and molecules of many systems
such as ionic solutions, molten salts, colloidal suspensions, ... . In addition
to its infinite range, the Coulomb potential between charges satisfies to the
Poisson’s equation and Green’s theorem and these characteristics induce,
in ionic fluids, the well known physical property of charge screening. The
interactions between the permanent or induced molecular dipoles are to the
origin of the dielectric constants of fluids of polar and polarisable molecules.
The aim of simulations being to determine the exact physical properties of
atomic and molecular systems, it is needed that, in the numerical simulations,
the Coulomb and dipole-dipole interactions are taken into account in such a
way that the specific physical properties which derive from their slow decrease
and infinite range stay preserved.
It is obvious that this last requirement is strictly incompatible with the

use of a cut-off of the Coulomb or dipole-dipole potentials at a distance of the
order of the sizes of systems studied in simulations which have typical values
of ∼ 1000− 10000 Å3 . Generally in simulations, the systems have periodic
boundary conditions. The main problem in the computation of Coulomb or
dipole-dipole interactions in finite systems is that the boundary conditions,
which, for confined systems, are different in the three spatial directions, are
correctly taken into account. First, we discuss the case of the three dimen-
sionnal (3D) systems and, then, that of the confined systems.

13.2 3-D Systems

Considering N atoms or molecules with a charge qi at a position ri in a cubic
simulation cell of side L with periodic boundary conditions, the coulomb
energy of these N charges Ec [1] is

Ec =
1
2

N∑

i,j=1

′ ∑

n∈Z3

qi qj
|rj − ri + nL| . (13.1)

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 367–378, 2002.
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The sum over n (vectors with integer components) corresponds to the in-
teractions between the charges in the simulation cell and the infinite set of
their periodic replicas. In the sum over i and j, the ′ indicates that i must be
different of j when n = 0. Ec is a conditionnally convergent sum definite only
when it is specified how the sum over n is performed. For instance, the sum
can be made by adding the terms of increasing modules of n ; the replicas
of the simulation cell in filling the space generate a cubic lattice of identical
cells having a quasi-spherical external surface at macroscopic distance sur-
rounded by the vacuum or a dielectic medium of dielectric constant ε. This
procedure of computation of Ec has been described and studied carefully in
the literature [2,3]. It involves the split of the coulomb potential following the
identity:

1
r
=
f(r)
r

+
1− f(r)
r

(13.2)

where r = |r| and f(r) is a rapidly decreasing function of r for instance
f(r) = erfc(αr) and the use of the electroneutrality condition

∑
i qi = 0. It is

this latter condition which allows to remove the divergent contribution in the
sum of (13.1). By the substitution in (13.1) of the identity above, the sum
over n is divided in two sums, corresponding to each terms of the right-hand
member of (13.2). The first sum is performed in r-space and, after a Fourier
transformation, the second sum is made in k-space. These two new sums are
rapidly convergent.
The result is

Ec =
1
2

N∑

i,j=1

′ ∑

n∈Z3

qi qj
erfc(α|rij + nL|)
|rij + nL|

+
1
2L3

∑

k �=0

4π
k2
exp(− k

2

4α2 )|
∑

j

qj e
ik.rj |2

− α√
π

∑

i

q2i +
2π

(1 + 2ε)L3 |
∑

i

qiri|
2

. (13.3)

Equation (13.2) being an identity, the value of Ec is independent of α. How-
ever an adequate choice of α allows to suppress the sum on n and to restrict
that on k ( k = 2πn/L) to a limited number of terms. These approximations
induce a “small” and controlled numerical relative error (∼ 10−4 − 10−7) in
the calculation of Ec. For a “metallic” surrounding medium of the replica
lattice ε = ∞, the last term, the square of the dipolar electric moment of
the charges, disappears ; but when ε is finite, some cautions are needed in
the calculation of this term which, contrary to the other terms of Ec, is not
periodic. In a molecular dynamics simulation, the particle positions at time
t, ri(t), used to compute the dipolar moment must be those of the “image”
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particles which diffuse from their initial position ri(0) in the simulation cell
through the replica lattice [4].
Some remarks on the calculation of Ec can be done. When |rij | is com-

puted with a minimum image convention:

|rij |2 = |xi − xj − L{nint(xi − xj

L
)}|

2
+ |yi − yj − L{nint(yi−j

L
)}|

2

+ |zi − zj − L{nint(zi − zj
L

)}|
2
, (13.4)

where nint(a) denotes the nearest integer of the decimal number a, the cal-
culation of |rij |2 needs about 17 elementary “operations” of a standard com-
puter CPU. The second term involving the sum on k is a Fourier series which
can be rewritten in order to use a “fast fourier transformation” (FFT) algo-
rithm. The scaling with the number of charges N of the computation time
is reduced from N2 or N3/2 (with a good choice of α) to N lnN . The FFT
algoritm needs a very carefull numerical implementation in order to calculate
Ec with an accuracy of 10−6 − 10−8 [5,6,7].
Another improvement in the computation of Ec can be made by using

a multipole expansion to calculate the terms in r-space [8,9]. It consists to
divide the simulation cell volume in m subvolumes (for instance cubic) v1,
..., vm, so that the r-space terms of the energy of a charge i are:

Ei =
∑

l=1,m

∑

j∈vl

qi qj
erfc(α|rij |)
|rij | . (13.5)

The contribution to Ei of the charges in the subvolume l can be estimated
by a Taylor expansion around the position r̄l of the center of vl:

Ei,l ≡
∑

j∈vl

qi qj
erfc(α|rij |)
|rij |

= qi
∑

n

1
n!
∇n

r̄l

erfc(α|ri − r̄l|)
|ri − r̄l|

∑

j

qj {rj − r̄l}n , (13.6)

which needs the computation of the distances between the charges j ∈ vl and
r̄l. From the fact that these distances are identical for all the charges i, it
results an important decrease of the computation time of Ec. An efficient im-
plementation of the “multipole” method is described in [9] where it is shown
that, for N > 10000, the computation of Ec by this method is significantly
faster than by using the standard Ewald method.
The finite size and boundary conditions of the simulation cell can be taken

into account in more physical way by considering that the charges interact by
the potential solution of the Poisson’s equation in such a volume [10]. Since,
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as it was known, the potential of a point charge is not defined in a closed
space, it is needed to introduce “pseudo-charges” which are defined by the
association of a point charge q and a uniform neutralizing background filling
the simulation cell, i.e:

ρ(r) = qδ(r) =⇒ ρ̄(r) = q[δ(r)− 1
L3 ] . (13.7)

The potential φ(r) produced by ρ̄(r) is the solution of the equation

Δφ(r) = 4πρ̄(r) (13.8)

with von Neuman boundary conditions which is given by

φ(r) =
q

L3

∑

k �=0

4π
k2
eik.r . (13.9)

By using the identity:

1
k2
=
1− exp(−k2/4α2)

k2
+
exp(−k2/4α2)

k2
(13.10)

in (13.9) defining the potential of one charge, it is easy to recover the previous
formula for the Coulomb energy Ec of N charges (Eq. (13.3)), for ε =∞, by
taking the Fourier transform of the contribution to Ec associated to the first
term of the right-hand member of (13.10). This approach to the computation
of Coulomb energy opens the possibility to consider simulation cells which
are different from a cubic or parallelepipedic volume with periodic boundary
conditions. One of these possibilities consists in confining the charged par-
ticles on the “surface” of a four dimensionnal (4-D) sphere (a hypersphere)
[11,12]. Since the surface of a hypersphere (a 3-D volume) is finite, it is needed
to use “pseudo-charges”:

ρ̄(M) = q[δ(Mo −M)− 1
VH
] , (13.11)

where VH = 2π2R3 (R, 4-D radius of the hypersphere). Mo and M are 4-
D vectors which define the positions of the “pseudo-charge” and a point on
the surface of the hypersphere, having its center at the origin of the 4-D
coordinate referential. The distance between two charges located at Mi and
Mj is the length of the geodesic linking these positions

rij = R arccos(
Mi.Mj

R2 ) ≡ Rψij . (13.12)

The potential φ(M) generated by ρ̄(M) is given by the solution of:

ΔSφ(M) = 4πρ̄(M) (13.13)
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where ΔS is the Laplacian operateur on the surface of a hypersphere [11].
This solution is

φ(M) =
q

πR
[(π − ψ) cot(ψ)− 1

2
] . (13.14)

From this potential, the coulomb energy of N charges located on the hyper-
sphere surface is given by:

Ec =
1
2

N∑

i,j �=1

qiqj
π R

[(π − ψij) cot(ψij)− 12 ] . (13.15)

The computation of this energy is very straightforward from

cos(ψij) =
1
R2 [xixj + yiyj + zizj + titj ] (13.16)

where xi, yi, zi and ti are the four coordinates of Mi. From the previous
equation, it is easy to estimate that the computation of the distance between
the charges i and j along a geodesic on the hypersphere surface need about
7 operations. This number of operations must be compared to the 17 oper-
ations which are needed to calculate the distance between two charges with
the minimum image convention. It give an considerable interest to the hyper-
sphere method due to its excellent computational efficiency for systems with
N ∼ 1000-10000. Detailed comparisons of the simulation results of charged
systems located on a 4-D hypersphere surface or in a 3-D volume with pe-
riodic boundary conditions have been done in [12,13]. The simulations of
polar fluids and electrolyte solutions can be realised on a 4-D hypersphere
surface by deriving from the charge-charge potential φ(M) the charge-dipole
and dipole-dipole potentials [13]. Simulation data are presented in Table 13.1
and 13.2, for the restricted primitive model (RPM) and the RPM in a fluid
solvent of hard spheres of diameter σ with a permanent dipole μ):

Table 13.1. Comparison between the “Ewald” method and hypersphere method:
results of simulations of the restricted primitive model (N/2 hard spheres of diam-
eter σ with a charge q and N/2 hard spheres of diameter σ with a charge −q) in a
volume V . T , ρ, U and P are, respectively, the temperature, density, pressure and
internal energy of the considered thermodynamic state of RPM.

q2/kBTσ ρ = Nσ3/V U/kBT P/ρkBT N Method
2 0.67 -0.732(3) 4.97(2) 512 “Hypsph.”
2 0.67 -0.738(3) 5.06(4) 256 “Ewald”
40 0.67 -20.90(2) 1.98(3) 256 “Hypsph.”
40 0.67 -20.86(5) 1.96(3) 128 “Ewald”

In many interesting physical conditions it is relevant to represent a com-
plex molecular or colloidal suspension made of charged molecules or colloidal
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Table 13.2. Comparison between the “Ewald” method and hypersphere method:
results of simulations of a ionic solutions made of a RPM (Ni/2 hard spheres of
diameter σ with a charge q and Ni/2 hard spheres of diameter σ with a charge
−q) solvated in a dipolar hard sphere fluid of Nd hard spheres of diameter σ with
a permanent dipole μ in a volume V . T , N = Ni + Nd, Uii, Uid and Udd are,
respectively, the temperature, the total number of particles, the internal energies
resulting of the charge-charge, charge-dipole and dipole-dipole interactions.

Ni q2/kBTσ Nd μ2/kBT Uii/kBT Udi/kBT Udd/kBT Nσ3/V Method
54 8 810 3.13 -1.47(4) -2.85(3) -2.87(5) 0.6 “Hypsph.”
54 8 810 3.13 -1.51(2) -2.88(2) -2.78(5) 0.6 “Ewald”

particles, solvent molecules, co-ions and counter-ions by a system of molecules
or colloidal particles interacting by a screened potential (Yukawa potential)
Ze exp(−κr)/r where Ze is an effective charge and 1/κ = λκ the damping
length. An identical approximation can be also relevant for the interactions
bewteen the ions of a plasma screened by the free ectrons.
In simulations where λκ is larger than L the side of the simulation cell, it

is possible to take into account the tail of the Yukawa interaction by methods
similar to those used for the Coulomb interaction.
Considering a cubic volume of side L with periodic boundary conditions,

the Yukawa potential generated by a particle at the center of this volume is
the solution of the Helmotz’s equation

(Δ− κ2)φY (r) = 4πδ̂(r) (13.17)

where δ̂(r) is

δ̂(r) =
∑

n∈Z3

δ(r + nL) =
1
L3

∑

k

eik.r . (13.18)

The potential φY (r) is equal to

φY (r) =
4π
L3

∑

k

eik.r

k2 + κ2
. (13.19)

By using the identity

δ̂(r) = δ̂(r)− λf(r) + λf(r) . (13.20)

where

f(r) = (
α2

π
)3/2 e−(α r)2 (13.21)

and
λ = exp(−κ2/4α2) , (13.22)

it is possible by substituting the Fourier transform of this identity in (13.18),
to rewrite φY (r) in a form which takes into account the tail of the Yukawa
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interaction and the effect of the periodic boundary conditions. This form
which, as expected is similar to that the Ewald potential, is given

EY =
1
2

N∑

i,j

qi qj
{∑

n

erfc (α|ri − rj + nL|+ κ/(2α)) exp(κ|ri − rj + nL|)
2|ri − rj + nL|

+
erfc (α|ri − rj + nL| − κ/(2α)) exp(−κ|ri − rj + nL|)

2|ri − rj + nL| − 4π
κ2 L3

}

+
2π
L3

∑

k �= 0

exp[−(k2 + κ2)/(4α2)]
k2 + κ2

|
∑

i=1,N

qi exp (ik.ri) |2

+
1
2
{− 2α√

π
exp(−κ2/(4α2)) + κerfc(κ/(2α))

+ 4π
exp(−κ2/(4α2))− 1

κ2 L3

} ∑

i=1,N

q2i , (13.23)

where α is a convergence parameter similar to that in the Ewald expression
of Ec [14].

13.3 Confined Systems

When the systems of charged or dipolar particles are confined on a 2-D sur-
face, the two methods discussed above for the 3-D systems can be used to
take into account correctly the long range contribution of the Coulomb in-
teractions with minor modifications of the expressions of Ec given in (13.3)
[15,16].
The case of systems confined in volumes finite along one of the coor-

dinates has been considered by using the Ewald [17,18,19,20,21,22,23] and
hypersphere methods [24,25]. In a volume of square base L × L having a
finite extension h along the axis z and periodic boundary conditions in the
two directions x and y, the coulomb energy of N charges is:

E2D =
1
2

N∑

i,j=1

′ ∑

n∈Z2

qi qj
|rj − ri + nL| , (13.24)

where the vectors n have only x and y components.
A procedure similar to that used for the systems with 3-D periodic bound-

ary conditions (spliting of the 1/r potential and using a recipe to perform



374 Dominique Levesque

the sum on the two dimensionnal lattice of the replica cells), gives

E2D =
1
2

N∑

i,j=1

∑

n∈Z2

′qi qj
erfc(α|tij + nL, zij |)
|tij + nL, zij |

+
π

2L2

N∑

i,j=1

qi qj
∑

k �=0

eik.tij

k
[exp(kzij) erfc(

k

2α
+ αzij)

+ exp(−kzij) erfc( k2α − αzij)]

− α√
π

∑

i

q2i −
√
π

L2

N∑

i,j=1

qi qj [
1
α
exp(−α2z2ij) +

√
πzijerfc(αzij)]

(13.25)

where tij is a 2-D vector with components equal to xi − xj and yi − yj and
|tij +nL, zij | the distance between the particle i and the particle j or one of
its replicas.
The computation of the real space term can be reduced, by an adequate

choice of the parameter α, to that of the term n = 0. However the term in
the k-space involves a sum on the pair of charges that it is not possible to
rewrite without new approximations as a sum of order N as it is made for the
3-D systems with periodic boundary conditions identical in the three spatial
directions (cf. Eq. (13.3)).
On the surface of a 4-D hypersphere, a 3-D volume similar to a volume

of finite extension in the direction z with periodic boundary conditions in
the direction x and y, is a domain comprised between two parallel “planes”
located symmetrically on the opposite sides of the “equator” of the hyper-
phere. In this confined domain, the charged particles interact by the pair
potential given in (13.14). As in the 3-D case, the computational efficiency
of the hypersphere method is obvious compared to the complexity of the
“Ewald” expression in (13.25). The validity of the ‘ hypershere” approach for
the computation of the properties of confined systems of charged molecules
has been carefully checked by A. Delville and his co-workers [24,25].
Several approximation schemes have been developped to overcome the

computational complexity of (13.25). Such a sheme has been proposed by
Hautman and Klein [26], it starts with the identity

1
r
= (
1
r
−
∑

n=0,m

anz
2n

t2n+1 ) +
∑

n=0,m

anz
2n

t2n+1 (13.26)
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where r = {x, y, z} = {t, z} and an are the coefficients of the Taylor expan-
sion of 1/r in powers of z/t. 1/t2n+1 is rewritten as:

1
t2n+1 =

hn(t, α)
t2n+1 +

1− hn(t, α)
t2n+1 (13.27)

where hn(t, α)/t2n+1 = ∇2n(h0(t, α)/t)/(an2n!) and h0(t, α) = erf(t/α) a
function which for an adequate choice of α and increasing t goes rapidly to 1.
By subsituting these two identities in (13.24) and using the “Ewald” pro-

cedure, it is possible to obtain an expression of E2D similar to that found in
the case of 3-D periodic boundary conditions: E2D = VS + VL where VS is a
term, computed in r-space, taking into account the contribution of the inter-
actions at short distance and VS , computed in k-space, taking into account
the contribution of the interactions at long distances:

VL =
π

L2

N∑

i,j=1

qi qj
∑

n=0,m

anz
2n
ij

∑

k �=0

fn(k, α)
k2n−1 e

ik.tij

+
1
2

N∑

i,j=1

qi qj
∑

n=0,m

anz
2n
ij Cn(α) + (constant terms) (13.28)

with, for k �= 0

fn(k, α) =
1

k1−2n

1
2π

∫

dt eik.t hn(t, α)
t2n+1 (13.29)

and

Cn(α) =
1
L2

∫

dt
hn(t, α)− δn,0

t2n+1 . (13.30)

The real space contribution VS is

VS =
1
2

N∑

i �=j=1

qi qj
∑

n∈Z2

1
|rj − ri + nL| −

∑

n′=0,m

an′z2n′
ij

hn′(|tij + nL|, α)
|tij + nL|2n′+1

+ (constant terms) . (13.31)

For the computation of VS , α is chosen so that the sum on n is reduced to
its first term. In VL it is clear that this expression can be rewritten by the
inversion of the order of the sums on i, j, n and k in such a way that the sum
on the charge pairs is obtained by computing products: |∑i qiz

n
i exp(ik.ti)·

·∑j qjz
m
j exp(−ik.tj)| where n and m are powers of zi or zj . The calculation

of E2D with these expressions of VS and VL, when the typical value of the
ratios zij/tij ∼ h/L is small, can be made by using m ≤ 3 and need a
computation time similar to that of Ec for a 3-D systems. A very accurate
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estimate of E2D needs to take into account in the developments in power of
zij of (13.28) and (13.31) the terms up to the order of z6ij [27].
Leckner and Grønbeck-Jensen [28,29] have used a different method to su-

press the sum on the charge pairs in E2D. In this method, the series associated
to the electric field between two charges derived from (13.24) is rewritten by
using an integral representation of 1/|rj − ri +nL|3. The integration of this
new expression of the electric field gives the potential Vij between two charges
i and j located, for instance, in a slab of sides Lx, Ly and Lz with periodic
boundary conditions in the x and y spatial directions:

Vij(xij , yij , zij) = 4
qiqj
Ly

∑

m=1,∞
cos(2πm

yij
Ly
)

∑

k=−∞,∞
K0[2πm{(Lx

Ly
)2(
xij

Lx
+ k)2 + (

zij
Ly
)2}1/2]

− qiqj
Ly

ln[cosh(2π
zij
Lx
)− cos(2πxij

Lx
)]− qiqj

Ly
ln 2 . (13.32)

at this potential must be added constant contributions vi and vj which repre-
sent the interaction between the charges i and j with their periodic replicas.
vi is given by

vi =
q2i
Ly
[4
∑

m=1,∞

∑

k=1,∞
K0(2πmk

Lx

Ly
) + C + ln(

1
4π
Lx

Ly
)] . (13.33)

where C is the Euler constant. There is an equivalent expression of Vij where
the coordinates xij and yij are exchanged. However in order to be accurate
for all possible values of the coordinate of xij , yij and zij , these expressions
of Vij must be computed by using m ∼ 30 − 100 and k � 3 [30]. These
constraints are not favorable to the computational efficiency of the method.
A very simple method for the simulations of charged systems, in a slab

of thickness h in the z direction and sides Lx and Ly in x and y directions
with Lx and Ly >> h, is to locate the slab to the centre of a simulation cell
having a dimension Lz much larger than the lateral dimensions Lx and Ly

and obviously h. This simulation cell is considered to have periodic boundary
conditions in the three directions of space. The charges are located between
the slab surfaces perpendicular to the z-axis and to the z coordinates z =
±h/2. Since Lz >> Lx and Ly, the interactions between charges located in
the replica of the slab are negligible and E2D can be accurately computed
from the expression of Ec, easily generalised to the case of a parallelepipedic
simulation cell [31,32,33].
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13.4 Conclusion

In order to preserve, the physical specific properties of systems of charged
and/or polar atoms or molecules induced by the long range of the charge-
charge, charge-dipole or dipole-dipole interactions, it is essential in numerical
simulations realized in volumes with periodic boundary conditions to use an
Ewald expression of the energy. An efficient and accurate substitute to this
method is the hyperspere method described above which, however, is diffi-
cult to use for systems of complex molecules due to geometrical constraints
induced by curvature effects.
In confined systems, at the notable exception of the hypersphere method,

a very accurate estimate of E2D stays difficult to achieve [34,35,36]. However
it has been recently established [27] that ,as it is expexted, all methods men-
tionned here when they are carefully implemented give identical results, then
the choice between these methods must be made on criterions such accuracy,
computational efficiency and fast convergence to thermodynamic limits.
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Abstract. New developments in plane-wave based ab initio calculations are re-
viewed. First, a general framework for electrostatic calculations is presented that
allows 3-dimensional periodic systems (solids, liquids), 2-dimensional periodic sys-
tems (surfaces), and non-periodic systems (clusters) to be treated properly and eas-
ily (J. Chem. Phys. 110, 2810-2821 (1999) and J. Chem. Phys. 115, 3531 (2001)).
Second, a general method for describing systems in which the electrons are assumed
to be localized in a single small region of space embedded within a large chemi-
cally inert bath, is discussed (J. Chem. Phys. 116 5351 (2002)) that significantly
enhances the ability of plane-wave based techniques to study reactions in biological
systems.

14.1 Introduction

Plane-wave based ab initio molecular dynamics simulation studies have been
successfully employed to gain insight into many different types of physicals
problems [1,2,3,4,5,6]. Indeed due to ab initio molecular dynamics’ unique
ability to treat bond breaking and bond making, new areas have become
available for detailed atomic-level examination. These areas span a wide range
from enzymes catalysis, to surface catalysis, to geochemical systems exempli-
fied by minerals under high temperature and pressure, among many others
[1,2,3,4,5,6]. Much of the recent progress in ab initio molecular dynamics ap-
plications has been spurred by methodological advances as well as powerful
parallel computers[7] whose speed can be expected to increase exponentially
following Moore’s law.
In this article, two recent advances in ab initio molecular dynamics tech-

nology are reviewed. The first involves generalizing the treatment of periodic
boundary conditions with the plane wave basis so that surfaces, wires, and
clusters can be studied as efficiently as fluids and solids[8,9]. Thus, transport
phenomena in surface catalysis and molecular beam studies, can be modeled
without loss of generality. Second, mixed ab initio/empirical force-field sim-
ulation studies, calculations in which one part of the system is treated using
a fully ab initio description and another part is treated using an empirical
description, have become an important tool to model biological processes
such as enzyme catalysis[11]. Therefore, it is shown how to extend plane-
wave based ab initio methods to model systems in which the electrons are

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 381–411, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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assumed to be localized in a single spatial area, the active site, within a large
chemically inert bath, the rest of the enzyme and the surrounding solvent
(water) with high efficiency (in order N log N)[12].
The article is organized as follows: A methods section is presented in which

the formulae for the two techniques are described. Next, a results section is
given wherein the formulae are employed to generate results on both model
and realistic systems. The realistic systems include the proton transport at
an ice surface and the HCA II enzyme solvated in liquid water.

14.2 Methods

In this section, a generalized reciprocal space based treatment of long range
interaction at clusters[8], on surfaces[9] and in solids/liquids, appropriate for
use with plane-wave basis sets and Ewald summation is presented. Given the
generalized expressions for the long range forces, the techniques required to
model systems in which the electrons are assumed to be localized in a single
spatial area within a bath using a plane wave basis set are described.

14.2.1 Clusters, Surfaces and Solids/Liquids

Consider a probability density, n(r) enclosed by a three dimensional paral-
lelepiped. Such a function can be expanded in a plane-wave basis set without
loss of generality,

n(r) =
1
V

∑

ĝ

n̄(g) exp(ig · r) (14.1)

n̄(g) =
∫

D(h)
dr exp(−ig · r)n(r) = V

1
2∫

− 1
2

1
2∫

− 1
2

1
2∫

− 1
2

dsadsbdsc exp(i2πĝ · s)n(hs)

where the domain of integration is restricted to the volume defined by the
parallelepiped denoted by D(h). Here, h is the matrix whose columns are
the Cartesian components of the three vectors describing the parallelepiped,
{a,b, c}, V = det(h) is the volume, ĝ is the vector of integers {ĝa, ĝb, ĝc},
g = 2πĝh−1 is the reciprocal lattice vector, and r = hs.
The above result holds in a cluster, along a wire, on a surface or in a

solid/liquid. That is, for a cluster, n(r) is assumed to vanish everywhere on
the boundary of the parallelepided, while in liquid/solid, the simply density
matches on the boundary. For a surface (wire), the density matches on four
(two) of the six faces of the parallelepiped and vanishes on the other two
(four). Thus, in order to study surfaces, it is useful to examine the where the
a and b axes are taken to lie in the x-y plane and the c axis is taken to lie
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on the z-axis, i.e. the cell angles are taken to be α = β = 90, γ �= 90. This
implies a monoclinic cell of the form

h =

⎛

⎝
h11 h12 0
h21 h22 0
0 0 Lc

⎞

⎠ =
(
hs 0
0 Lc

)

, (14.2)

reciprocal lattice vectors of the form, g = {gs, gc} with gc = 2πĝc/Lc, gs =
2πĝsh−1

s ,ĝs = {ĝa, ĝb}, and real space vectors of the form r = {rs, z} with
rs = {x, y}. Surfaces are accurately described if the c-boundary height, Lc, is
taken large enough that the density vanishes on the c-boundary i.e. Lc > Lt

where Lt is the surface thickness. Similarly, for a cluster it is useful to consider
an orthorhombic cell, α = β = γ = 90 where the a,b and c boundary heights
La, Lb, and Lc,

h =

⎛

⎝
La 0 0
0 Lb 0
0 0 Lc

⎞

⎠ (14.3)

respectively, are large enough to enclose the density as described above.
Next, consider a system with density n(r) subject to scalar potential φ(r).

The average potential energy taken over the density is

〈φ〉 = 1
2

∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′)

∑

ŝa,ŝb,ŝc

φ(r− r′ + hŜ). (14.4)

For a liquid or solid, the sum is over the infinite array of periodic images along
each parallelepiped axis, a, b and c and Ŝ = {ŝa, ŝb, ŝc} is a vector of integers
while for a cluster, Ŝ is restricted to the point, {0, 0, 0}, only (no images!). In
contrast, for a surface, Ŝ = {ŝa, ŝb, 0} is taken; there are no images along c.

14.2.1.1 Solids/Liquids
In solids and liquids, the standard case, the Poisson summation formula

∑

ŝa,ŝb,ŝb

F (hS) =
[
1

deth

]∑

ĝ′′
G(ĝ′′h−1) (14.5)

G(ĝ′′h−1) =
∫ ∞

−∞
dr′′F (r′′) exp[−i2πĝ′′h−1r′′] = F̃ (g)

can be directly inserted into the energy[13] and the result simplified to yield

〈φ〉 =
[

1
2 deth

]∑

ĝ

∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′)φ̃(g) exp(ig · [r− r′])

=
[

1
2 deth

]∑

ĝ �=0

|n̄(g)|2φ̃(g) (14.6)
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Note, the definition, g = 2πĝh−1, given above, has been employed and φ̃(g)
is the three dimensional Fourier transform of the scalar potential. Finally,
the point, g = {0, 0, 0}, has been eliminated from sum. This term, described
in detail in [14,13], depends on the boundary conditions taken at infinity
for long range potentials. If the potential, φ(r), is Coulomb’s law (the usual
case), then neglecting g = 0 is equilivalent to surrounding the infinite array
of periodic images by a sphere of metal.

14.2.1.2 Clusters
In order to generalize, naturally, the formalism to treat clusters, the “1st
periodic image” or “nearest periodic image” form of the potential energy
is introduced. The 1st image form of the scalar potential, φ(1)(r − r′), can
be expressed as φ(r − hŜ(1)) where the three elements of the 1st image,
Ŝ(1) = {Ŝa, Ŝb, Ŝc} with Ŝ(1)

α , are chosen to minimize the distance along each
cell axis (given in h). This is equivalent to forcing the scalar potential to
assume the periodicity of cell. The first image form of the potential energy
exactly reduces to the energy of cluster given in (14.4) if the axis of the
orthorhombic parallelepiped enclosing the cluster, {La, Lb, Lc}, are taken to
be at least twice the diameter of the cluster along each of the three directions
rather than simply large enough for the density to vanish on the surface of
the parallelepiped. In this way, the nearest image between points in the cell
with non-zero density is Ŝ(1) ≡ 0 as stated below Eq. (14.4).
It is, now, a straightforward to write a simple expression for the energy of

cluster in reciprocal space which only assumes that simulation parallelepiped
is taken suffiently large,

〈φ(1)〉 = 1
2

∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′)φ(1)(r− r′).

=
[

1
2 deth

] ∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′)

∑

ĝ

φ̄(g) exp(ig · (r− r′))

=
[

1
2 deth

]∑

ĝ

|n̄(g)|2φ̄(g) (14.7)

that the first image reduces to the cluster energy. Here, the fact that φ(1)(r)
is a periodic function has been used by expressing the potential in terms of
its plane-wave or Fourier Series expansion,

φ̄(g) =
∫

D(h)
dr exp(−ig · r)φ(r) (14.8)

where φ(r) is the scalar potential of interest. This is in contrast to the result
for solids/liquids which contains the Fourier transform of the potential.
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Given the similarity between the expressions for long range interactions
in cluster and solids/liquids, it is natural to accentuate these similarities and
rewrite the cluster energy as

〈φ(1)〉 =
[

1
2 deth

]∑

ĝ �=0

|n̄(g)|2
[
φ̃(g) + φ̂(screen)(g)

]
+
[

1
2 deth

]

φ̄(0)|n̄(0)|2

(14.9)

Here, the “screening function”,

φ̂(screen)(g) = φ̄(g)− φ̃(g) (14.10)

acts to “screen” or cancel the interactions with the infinite array of peri-
odic images that arises from φ̃(g) (see (14.6)). Now, the solid/liquid expres-
sion naturally emerges by simply setting the screening function to zero and
omitting the g = 0 term. Again, (14.9) is only valid if the cell is taken ap-
propriately large as described above (the edges of the rhombohedral cell,
{La, Lb, Lc}, at least twice the diameter of the cluster in the corresponding
directions).
For the two most important cases, Coulomb’s law, φ(r) = 1/|r| and “soft-

ened” Coloumb’s law, φ(r) = erf(αewd|r|)/|r|, the Fourier Transforms can be
determined analytically, φ̃(g)=4π/|g|2 and φ̃(g)=4π exp[−|g|2/4α2

ewd]/|g|2,
respectively. However, the Fourier series expansion must be evaluated numer-
ically. This can easily be accomplished by writing

φ̄(g) = 4π
∫ rc

0
drr2φ(r)κ(r, rc, λ)

[
sin(gr)
gr

]

+
∫

D(h)
dr exp(−ig · r)φ(r)[1− κ(r, rc, λ)]

= χ1(g) + χ2(g) (14.11)

where a cutoff radius, rc = (1/2)MIN(La, Lb, Lc), and a smooth switching
function κ(r, rc, λ) which is unity for r ≤ rc − λ and zero for r ≥ rc has been
employed to divide the integral into two parts. The first integral, χ1(g) is
one dimensional (radial) and can be evaluated, numerically to high accuracy,
quickly and accurately. The second integral, denoted χ2(g), is three dimen-
sional but can be evaluated accurately and efficiently using a 3-Dimensional
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Fast Fourier Transform,

χ2(g) =
∫

D(h)
dr exp(−ig · r)φ(r)[1− κ(r, rc, λ)]

= V

1
2∫

− 1
2

1
2∫

− 1
2

1
2∫

− 1
2

dsadsbdsc exp(−i2πĝ · s)φ(long)(hs)

≈
[
V (−1)j+k+m

JKM

]{J−1∑

u=0

K−1∑

v=0

M−1∑

w=0

exp(−i2πĝ · ŝ)φ(long)(h[ŝ+ a])

}

(14.12)

where φ(long)(r) = φ(r)[1 − κ(r, rc, λ)], {J,K,M} is the number of equally
spaced grid points assigned to descretize {sa, sb, sc}, respectively, ŝ = {u/J,
v/K,w/M}, a = {−1/2,−1/2,−1/2}, and ĝ = {j, k,m} are reciprocal lattice
indices. That is, the term in the curly brackets is the unscaled 3-Dimensional
Fast Fourier Transform of the function, φ(long)(h[ŝ+ a]). In a realistic calcu-
lation, the screening function is evaluated once, at the beginning of a run and
stored. That is, the required g are discrete and the upper limit of reciprocal
space sums are truncated in the usual way.

14.2.1.3 Surfaces
From the above discussion, it is clear that the long range interactions on
surfaces can be placed on a similar footing. First,, the nearest image form of
the potential energy can be invoked along the c-direction so that φ(1,c)(r) =
φ(r+S(1)

c c) with S(1)
c chosen to minimize the distance along c-axis of the mon-

oclinic cell. That is, for surfaces, the c-axis is along z-direction and φ(1,c)(r)
is a periodic function of z. Second, the infinite sum over images along the
a,b axis of the monoclinic cell, can be treated using Poisson summation.
Following Ref.[9], the two dimensional generalization of the Poisson sum-

mation formula,
∑

ŝa,ŝb

F (hsSs) = [deths]
−1
∑

ĝ′′
s

G(ĝ′′sh
−1
s ) (14.13)

G(ĝ′′sh
−1
s ) =

∫ ∞

−∞
dx′′

∫ ∞

−∞
dy′′F (r′′s ) exp[−i2πĝ′′sh−1

s r′′s ]
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can then be combined with (14.4) to yield

〈φ〉 = 1
2det(hs)

∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′)

∑

ĝs

exp[igs · (rs − r′s)]φ̃s(gs; z − z′)

φ̃s (gs; z′′) =
∫ ∞

−∞
dx′′

∫ ∞

−∞
dy′′ φ(x′′i+ y′′j+ z′′k) exp(−igs · r′′s ),(14.14)

Here, ĝs is the vector of integers, {ĝa, ĝb}, gs = 2πĝsh−1
s is the in-plane

reciprocal lattice vector, Ss = {ŝa, ŝb}, rs = {x, y}, φ̃s(gs; z′′) is the two
dimensional Fourier Transform of the potential at fixed z′′, and i, j, and k
are the unit vectors in the x, y, and z directions, respectively. In the limit
the c-boundary height, Lc, is taken sufficiently large compared to the surface
thickness, Lt, the first or nearest image form of the potential energy function
along the c-direction is invoked. This form is valid if Lc > 2Lt for discrete
density functions (point particles) and Lc >

√
2Lt for smoothly decaying

density functions. The first image form is generated by introducing the plane-
wave expansion of the (z − z′) dependence of the function[8],

χ(gs; z − z′) ≡ 1
det(hs)

∑

ĝs

exp[igs · (rs − r′s)]φ̃s(gs; z − z′) (14.15)

to yield,

〈φ(1)〉 = 1
2V

∑

ĝs,ĝc

∫

D(h)
dr
∫

D(h)
dr′ n(r)n(r′) exp[ig · (r− r′)]φ̂(g) (14.16)

φ̂(g) =
∫ Lc/2

−Lc/2
dz′′
∫ ∞

−∞
dx′′

∫ ∞

−∞
dy′′φ(r′′) exp(−ir′′ · g),

where gc = 2πĝc/Lc is the out-of-plane reciprocal lattice vector and the
superscript “(1)” explicitly indicates the first image form. The plane wave
expansion employed to generate (14.16) is valid because the quantized com-
plex exponentials, exp(−igcz), form a complete orthonormal set. Last, the
plane-wave expansion of the density can be inserted into (14.16) and the
resulting expression simplified yielding[9]

〈φ(1)〉 = 1
2V

∑

ĝ �=0

|n̄(g)|2φ̂(g) + 1
2V
|n̄(0)|2φ̂(0)

=
1
2V

∑

ĝ �=0

|n̄(g)|2
[
φ̃(g)− φ̂(screen)(g)

]
+
1
2V
|n̄(0)|2φ̂(0) (14.17)

For surfaces, convenient closed form expressions for φ̂(g), can be derived
for two important cases, the pure Coulomb potential, φ(Coul)(r) = 1/|r|, and
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the long range part of the Coulomb potential employed in Ewald summation,
φ(Coul,Ewd)(r) = erf(αewd|r|)/|r|,

φ̂(Coul)(g) =
4π
g2
− 4π
g2

{

cos
(
gcLc

2

)

exp
(

−gsLc

2

)}

(14.18)

φ̂(Coul,Ewd)(g, αewd) =
4π
g2
exp
[

− g2

4α2
ewd

]

− 4π
g2

{

cos
(
gcLc

2

)

×
[

exp
(

−gsLc

2

)

− 1
2
exp
(

−gsLc

2

)

erfc
(
α2

ewdLc − gs
2αewd

)

−1
2
exp
(
gsLc

2

)

erfc
(
α2

ewdLc + gs
2αewd

)]

+exp
(

− g2

4α2
ewd

)

Re

[

erfc
(
α2

ewdLc + igc
2αewd

)]}

.

Here, g2 = |g|2 and g2s = |gs|2. Note, the expressions in (14.18) can be
easily decomposed into the form φ̂(Coul)(g) = φ̃(Coul)(g)+ φ̂(screen,Coul)(g)
and φ̂(Coul,Ewd)(g, αewd) = φ̃(Coul,Ewd)(g, αewd)+ φ̂(screen,Coul)(g, αewd) where
the tilde denotes the three dimensional Fourier Transform of the potential.

14.2.1.4 Wires
For the wire case, it will be assumed that the y and z directions are nonpe-
riodic and that the cell matrix corresponds to an orthorhombic cell, i.e., h is
diagonal with h11 = La, h22 = Lb, and h33 = Lc. Then, the contribution of
long range potential to the screening function becomes:

φ̂(g) =
∫ Lc/2

−Lc/2
dz

∫ Lb/2

−Lb/2
dy

∫ ∞

−∞
dx φ(u)e−ig·u (14.19)

Again, for the Coulomb potential split according to 1/r = erf(αr)/r +
erfc(αr)/r, the integrals can be done partially analytically, with the result
for Ewald summation

φ̂(Coul,Ewd)(g) =
4π
g2
exp
[

− g2

4α2
ewd

]

−4π
g2

[

exp
[

− g2

4α2
ewd

]

E(αewd, Lb, gb)E(αewd, Lc, gc)
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+ cos
(
gbLb

2

)
4
√
π

αewdLb
exp
(−g2c/4α2

ewd

)
I(αewd, Lb, Lc, gc)

+ cos
(
gcLc

2

)
4
√
π

αewdLc
exp
(−g2b/4α2

ewd

)
I(αewd, Lc, Lb, gb)

]

(14.20)

where

I(α,L1, L2, g) =
∫ αL1/2

0
dx xe−g2

aL2
1/16x2

e−x2
E

(
2x
L1
, L2, g

)

(14.21)

and

E(λ,L, g) = erf
(
λ2L+ ig
2λ

)

(14.22)

The one-dimensional integrals in (14.21) are well suited to be performed by
Gaussian quadrature techniques.
In the limit αewd → ∞, a simplified partially analytical expression is

available:

φ̂(Coul) −→ 4π
g2
− 4π
g2

[

cos
(
gbLb

2

)
J(gc, ga, Lc, Lb)

Lb

+ cos
(
gcLc

2

)
J(gb, ga, Lb, Lc)

Lc

]

(14.23)

where

J(g1, g2, , L1, L2) =
4
π

∫ L1/2

0
dx eig1x

√
θ(x, g2, L2)K1

(√
4θ(x, g2, L2)

)

(14.24)

θ(x, g, L) =
g2L2/16
1 + 4x2/L2 (14.25)

and K1(z) is a modified Bessel function. The complete formalism for the wire
case will be discussed in detail in a forthcoming publication [10].

14.2.1.5 Summary
In summary, the energy of a solid, surface or cluster takes on the general
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form

〈φ〉 = 1
2V

∑

ĝ �=0

|n̄(g)|2φ̂(g) + 1
2V
|n̄(0)|2φ̂(0)

=
1
2V

∑

ĝ �=0

|n̄(g)|2
[
φ̃(g)− φ̂(screen)(g)

]
+
1
2V
|n̄(0)|2φ̂(0) (14.26)

in reciprocal space. Care must be taken to properly evaluate the screening
function and to ensure that the cell is taken large enough in clusters, wires
and surfaces for the nearest image form to converge to desired result.

14.2.1.6 Application to Ewald Summation
The new formalism can be straightforwardly applied to Ewald summation of
the Coloumb energy for a system of point particles the total Coulomb energy
is

φ
(Coul)
tot (R) =

1
2

∑

Ŝ

′∑

ij

qiqj

|rij + hŜ|
(14.27)

φ
(Coul)
tot (R) =

1
2

∑

Ŝ

∑

ij

qiqj
erf(αewd|rij + hŜ|)

|rij + hŜ|
− αewd

π1/2

∑

i

q2i

+
1
2

∑

Ŝ

′∑

ij

qiqj
erfc(αewd|rij + hŜ|)

|rij + hŜ|
Here, the sum over i, j is over all particles in the system, the prime in-
dicates that i �= j when Ŝ = 0, ri is the position of particle, i, and qi
its charge, and the Ewald decomposition of the Coulomb potential (1/r =
[erf(αewdr) + erfc(αewdr)]/r) has been employed [13,14,15]. Introducing the
Fourier expansion coefficient of the particle charge density

S(g) =
∑

k

qk exp(−ig · rk) (14.28)

the potential energy is

φ
(Coul)
tot (R) =

1
2V

∑

ĝ �=0

[|S(g)|2W (g)]+ 1
2V
φ̂(screen,Coul)(0)|S(0)|2

−αewd

π1/2

∑

i

q2i +
1
2

∑

Ŝ

′∑

ij

qiqj
erfc(αewd|rij + hŜ|)

|rij + hŜ|
(14.29)

W (g) =
[
4π
g2

]

exp
(

− g2

4α2
ewd

)

+ φ̂(screen,Coul)(g) (14.30)
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In the Ewald form, the two contributions to the Coulomb energy, the re-
ciprocal space sum and the real space sum can both be truncated. The former
because the kernel, W (g), approaches zero exponentially quickly at large g
and the latter complementary error function, erfc(αewdr) approaches zero ex-
ponentially quickly at large distance. Thus, the reciprocal space term can be
evaluated in order N log N using Particle Mesh Ewald techniques in the stan-
dard way[16] where N is the number of particles. The real space term can be
summed in order N using link cell methods or link cell techniques combined
with Verlet neighbor lists[15]. The subtleties of the efficiency Particle Mesh
Ewald evaluation of the reciprocal space term for surfaces are described in
detail in Ref.[9].

14.2.1.7 Application to Plane-Wave Based Density
Functional Theory
The general expression for the energy, Eq. (14.17) can be used in conjunction
with plane-wave based density functional theory. In the Kohn-Sham formu-
lation [19,20] of density functional theory, the electron density is expanded
in a set of orbitals, {ψi(r)},

n(r) =
nocc∑

i=1

fi|ψi(r)|2 (14.31)

where nocc is the number of occupied orbitals and the fj are the occupation
numbers[21]. The energy functional is then given by

E[n] = Ts[{ψi}] + EH[n] + Exc[n] + Eext[n], (14.32)

where Ts is the kinetic energy of a system of noninteracting electrons, EH
is the Hartree energy, Exc is the exchange and correlation energy [21] and
Eext, represents the interaction of the electrons with the nuclei. If a plane
wave basis is employed to minimize the functional, Eq. (14.32), subject to
the orthogonality constraint (〈ψj |ψk〉 = δjk), atomic pseudopotentials are
typically used to eliminate the core electrons. Pseudopotentials divide the
external potential, Eext[n], into a long range local part, Eloc[n], and a short
range, non-local, angular moment-dependent part [22]. Thus, the Hartree and
local pseudopotential terms contain the only long-range potential interactions
present in (14.32).
In plane-wave based calculations at the Γ -point, the orbitals and, hence,

the density are expanded according to[2,6]

ψi(r) =
1√
V

∑

g

ψ̄i(g) exp(ig · r)

n(r) =
1
V

∑

g

n̄(g) exp(ig · r) (14.33)
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in a finite basis, E(orbitals)
cut = h̄2g2max/2me and E

(density)
cut = 4E(orbitals)

cut . Ex-
pressions for the Hartree and local external energies can be written in a
reciprocal space form following (14.17):

EH =
e2

2V

∑

ĝ

′|n̄(g)|2
[
4π
|g|2 + φ̂

(screen,Coul)(g)
]

+
(
e2

2V

)

φ̂(screen,Coul,0)n̄(0) (14.34)

Eloc[n] =
1
V

∑

ĝ

′
N∑

I=1

n̄(−g) exp(−ig ·RI)
[
φ̃loc,I(g)− eqI φ̂(screen,Coul)(g)

]

+
1
V

N∑

I=1

n̄(0)
[
φ̃

(0)
loc,I − eqI φ̂(screen,Coul,0)

]
, (14.35)

provided the cell matrix h is appropriately chosen for the given periodicity.
Here, qI is the charge on the Ith nuclei and φ̃loc,I(g) is the Fourier Transform
of the short range part of the electron-nuclear pseudopotential with the Ith

nuclei In addition, the prime indicates that the g = 0 term is eliminated
and the term, φ̃(0)

loc,I is the non-singular (short range) part of the local pseu-
dopotential at g = 0. Equations (14.34) and (14.35) demonstrate that the
modifications necessary to treat generally long range interactions are small
and can be implemented easily.

14.2.2 Dual Length Scale Approach

It is clear that the standard expressions for the Hartree and local external
energies given in (14.34) and (14.35), respectively, only possesses a single
length scale. A second length scale can be introduced by first rewriting the
real space expressions for these two energies using the identity erf(αr) +
erfc(αr) = 1,

EH[n] =

⎧
⎨

⎩

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
n(r)n(r′)erfc(α|r− r′ + hŜ|)

|r− r′ + hŜ|

⎫
⎬

⎭

+

⎧
⎨

⎩

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
n(r)n(r′)erf(α|r− r′ + hŜ|)

|r− r′ + hŜ|

⎫
⎬

⎭

= E(short)
H [n] + E(long)

H [n] (14.36)
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Eloc[n] =

⎧
⎨

⎩

∑

Ŝ

N∑

I=1

∫

D(h)

dr n(r)
[
φloc,I(r−RI + hŜ)

+
eqIerf(α|r−RI + hŜ|)

|r−RI + hŜ|

]}

−
⎧
⎨

⎩

∑

Ŝ

N∑

I=1

∫

D(h)

dr n(r)

[
eqIerf(α|r−RI + hŜ|)

|r−RI + hŜ|

]⎫
⎬

⎭

= E(short)
loc [n] + E(long)

loc [n]. (14.37)

Here, the first term in the curly brackets in each equation is short range
while the second term is long range. Note, both φloc,I(r) and −eqIerf(αr)/r
approach −eqI/r, assymptotically where qI is the charge on Ith ion core. In
the limit αV 1/3 >> 1, the sum over images in the first term of each expression
(i.e. the short range parts) can be truncated at the first or nearest image with
exponentially small error.
In order to proceed, it will be assumed that the electrons are localized

in a particular region of the large cell described by h which can be enclosed
in a small cell, described by hs, centered at the point, Rc. That is, the
orbitals and, hence, electron density are taken to vanish on the surface of hs.
Furthermore, it is assumed, for simplicity, that the as, bs and cs axes of hs

are parallel to the a, b and c axes of h such that h−1hs = D, a diagonal
matrix. Thus, we can define,

ψj(rs +Rc) = ψj,s(rs)

n(rs +Rc) = ns(rs) (14.38)

where, the rs span the small cell and can be expressed as rs = hss with
0 ≤ sα ≤ 1 and, both, ψj(r) ≡ 0 and n(r) ≡ 0 for rs = r −Rc outside the
domain of hs. The orbitals and the electron density can be expanded in a
plane wave basis set that spans the small cell, only,

ψj,s(rs) =
1√
V s

∑

ĝs

ψ̄j,s(gs) exp(igs · rs)

ns(rs) =
1
Vs

∑

ĝs

n̄s(gs) exp(igs · rs) , (14.39)

where gs = h−1
s ĝs, the vector of integers, ĝs = {ga,s, gb,s, gc,s}, indexes the

small reciprocal space and Vs = deths is the volume of the small cell. The
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plane wave energy cutoff is taken to be E(short)
cut (with the cutoff on the density

4E(short)
cut ).
Given that the electron density is localized in the small cell, the short

range components of the Hartree and local pseudopotential energies can be
evaluated straightforwardly,

E
(short)
H [n] =

e2

2

∫

D(hs)

dr
∫

D(hs)

dr′
ns(r)ns(r′)erfc(α|r− r′|)

|r− r′|

=
e2

2Vs

∑

ĝs

′n̄s(−gs)n̄s(gs)
[
4π
g2s

][

1−exp
(

− g
2
s

4α2

)]

+
e2π

2Vsα2 |ns(0)|2 (14.40)

E
(short)
loc [n] =

Ns∑

J=1

∫

D(hs)

dr ns(r)
[

φloc,J(r−RJ +Rc)+
eqJerf(α|r−RJ +Rc|)

|r−RJ +Rc|
]

=
1
Vs

∑

ĝs

′
Ns∑

J=1

n̄∗s(gs) exp(−igs · [RJ −Rc]) ×

×
[

φ̃loc,J(gs) +
4πeqJ
g2s

exp
(

− g
2
s

4α2

)]

+
1
Vs

Ns∑

J=1

n̄s(0)
[
φ̃

(0)
loc,J −

eqJπ

α2

]
. (14.41)

where the J sum runs over the Ns ions within the small cell, the ĝs sum
runs over the large reciprocal-space grid of the small cell and Rc is position
of the small cell inside the large. Since the full system is not periodic on hs

but on h, Eqs. (14.40-14.41) will only yield the correct short range energy
if αV 1/3

s >> 1 and n(rs) vanishes on the small cell boundary. The non-
local pseudopotential energy is short range and is assumed to be evaluated
within the small cell (only, considering the Ns ions in the small cell and
using the small cell reciprocal space). Similarly, the exchange correlation and
the electronic kinetic energies can also be evaluated in the small cell using
standard techniques[2,6].
Next, the expressions for the long range portions of the Hartree and local

pseudopotential energies must be formulated. This can be accomplished by
expanding the electron density localized in the small cell in terms of the
plane waves of the large cell. This expansion is permitted because the electron
density, localized in the small cell, obeys periodic boundary conditions in the
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large cell (i.e. it is zero on the surface of h). Thus,

E
(long)
H [n] =

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
n(r)n(r′)erf(α|r− r′ + hŜ|)

|r− r′ + hŜ|

=
e2

2V

∑

ĝ

′n̄(−g)n(g)
[
4π
g2
exp
(

− g
2

4α2

)

+ φ̂(screen,Coul)(g)
]

+
(
e2

2V

)[
φ̂(screen,Coul)(0)− π

α2

]
|n(0)|2 (14.42)

E
(long)
loc [n] = −

∑

Ŝ

N∑

I=1

∫

D(h)

dr n(r)

[
eqIerf(α|r−RI + hŜ|)

|r−RI + hŜ|

]

= − e
V

∑

ĝ

′n̄∗(g)S(g)
[
4π
g2
exp
(

− g
2

4α2

)

+ φ̂(screen,Coul)(g)
]

− e
V
n̄s(0)S(0)

[
φ̂(screen,Coul)(0)− π

α2

]
. (14.43)

where

S(g) =
∑

I

qI exp(ig ·RI) (14.44)

is the atomic structure factor and

n̄(g) =
∫

D(h)

dr exp[−ig · r]n(r) (14.45)

=
∫

D(hs)

drs exp[−ig · rs]n(rs +Rc)

=
∫

D(hs)

drs exp[−ig · (rs −Rc)]ns(rs)

are the plane wave expansion coefficients of the electron density in the re-
ciprocal space of the large cell, g = h−1ĝ. The integral in (14.45) can be
extended to cover the domain described by the large cell without loss of gen-
erality because n(rs +Rc) ≡ 0 outside of the small cell. Note, n̄(g) = n̄s(gs)
if hs ≡ h and Rc = 0. Methods for the efficient evaluation of (14.45) and,
hence, (14.42) and (14.43) are developed below.
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First, it is clear from the long range/short range decomposition of the
Hartree and local pseudopotential energies that a different plane wave cutoff
can be introduced to treat each part. That is, one cutoff, E(short)

cut , can be used
to evaluate the short range components of the energy, (14.40) and (14.41), and
another, E(long)

cut can be used to evaluate the long range components, (14.42)
and (14.43). While the long range/short range decomposition is, general, it is
expected that the short range contributions will be obtained by integration
over functions that rapidly vary spatially while the long range contributions
will be obtained by integration over a slowly varying function. Therefore, the
short range energy contributions must be evaluated using a large reciprocal
space cutoff (i.e. the standard E(density,short)

cut = 4E(short)
cut ). In contrast, the

long range part can be evaluated, in reciprocal space, using a small cutoff,
E

(long)
cut << E

(short)
cut . Thus, by splitting the electronic energy into two parts,

large gains in efficiency are possible.
Next, consider the case that the number of particles in the small cell, Ns

and the small cell volume, Vs), are much less than their large cell counterparts
(Ns << N and Vs << V ) as would be the case for a large, chemically inert
bath surrounding a chemically active subsystem. The computational cost of
evaluating the short range local pseudopotential and short range Hartree,
exchange correlation, non-local pseudopotential and the electronic kinetic
energy as well as the overlap matrix, 〈ψj,s|ψi,s〉, scales like ∼ N3

s . The com-
putational cost of evaluating the long range part of the Hartree and local
pseudopotential energies depends on the computational cost of evaluating
the atomic charge density, S(g), and the plane wave expansion of the density
in the large cell (see Eq. (14.45)). Since the atomic charge density can be
evaluated in N log N using Particle Mesh Ewald techniques [16], if (14.45)
could also be evaluated in N log N , the computational cost of the method
would then be N log N at fixed hs and Ns. (The present approach yields a
linear scaling method because the number of plane waves increases linearly
with particle number at fixed particle density and plane wave cutoff).
In order to achieve linear scaling, the electron density must be interpolated

from the small cell where it is described by a plane wave expansion with a
large cutoff, E(short)

cut , to the large cell where it is described by a plane wave
expansion with a small cutoff, E(long)

cut . First, consider the Fourier components
of the density

n̄(g) =
∫

D(h)

dr exp[−ig · r]n(r). (14.46)

If n(r) can be expressed in a finite plane wave basis,

n(r) ≡ 1
V

Pa/2∑

ĝa=−Pa/2+1

Pb/2∑

ĝb=−Pb/2+1

Pc/2∑

ĝc=−Pc/2+1

exp(ig · r)n̄(g), (14.47)
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then the Fourier coefficients can also be determined (exactly) from a discrete
sum over a real space grid

n̄(g) ≡ V

PaPbPc

Pa−1∑

ŝa=0

Pb−1∑

ŝb

Pc−1∑

ŝc=0

e−2πiĝaŝa/Pae−2πiĝbŝb/Pbe−2πiĝcŝc/Pcn(hs)

(14.48)

Here, Pa, Pb, and Pc are both the number of reciprocal lattice points along
each direction and the number of points discretizing the a,b, c axes of the
cell, and sα = ŝα/Pα. Importantly, Eq. (14.48) and its inverse, Eq. (14.47),
can be evaluated using a three dimensional Fast Fourier Transforms (3D-
FFT) in order N log N . A spherical cutoff is introduced in reciprocal space
by simply assuming that n(r) is described by a basis in which n̄(g) ≡ 0 when
h̄2|g|2/2me > Ecut.
Next, consider a function, f(r) with plane wave expansion coefficients,

f̄(g) =
∫

D(h)

dr exp[−ig · r]f(r)

= V
∫ 1

0
dsa

∫ 1

0
dsb

∫ 1

0
dsce

−2πiĝasae−2πiĝbsbe−2πiĝcscf(hs). (14.49)

that can be described on a finite reciprocal space (cf. Eq. (14.48)). In order
to express the plane wave expansion coefficients, accurately, in terms of a
sum over an arbitrary set of equally spaced discrete points in real space (as
opposed to the continuous integrals given in (14.49) or the discretization
required by (14.48), it useful to introduce the Euler exponential spline[17,18]

exp
(
2πiĝαu
P̃α

)

= dm(ĝα, P̃α)
∞∑

ŝ=−∞
Mm(u− ŝ) exp

(
2πiĝαŝ
P̃α

)

+O
(
2|ĝα|
P̃α

)m

(14.50)

dm(ĝα, P̃α) =
exp
(
2πi(m− 1)/P̃α

)

[∑m−2
j=0 Mm(j + 1) exp

(
2πiĝαj/P̃α

)]
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where ŝ is an integer, u is a real number, m is the spline order assumed to
be even and the Mm(u) are the Cardinal B splines

M2(u) = 1− |u− 1| (14.51)

Mm(u) =
[
u

m− 1
]

Mm−1(u) +
[
m− u
m− 1

]

Mm−1(u− 1)

Mm(u) �= 0 0 < u < m

Mm(u) = 0 u ≤ 0, u ≥ m
∞∑

ŝ=∞
Mm(u− ŝ) = 1

dMm(u)
du

= Mm−1(u)−Mm−1(u− 1)

Inserting the Euler exponential spline into (14.49) yields a well defined ap-
proximation to f̄(g),

f̄(g) ≈
[
V d∗m(ĝa, P̃a)d∗m(ĝb, P̃b)d∗m(ĝc, P̃c)

]
(14.52)

×
P̃a−1∑

ŝa=0

P̃b−1∑

ŝb=0

P̃c−1∑

ŝc=0

e−2πiĝaŝa/P̃ae−2πiĝbŝb/P̃be−2πiĝcŝc/P̃cf (conv)(hs)

where

f (conv)(hs) =
∫ 1

0
ds′a

∫ 1

0
ds′b

∫ 1

0
ds′c

∞∑

ka=−∞

∞∑

kb=−∞

∞∑

kc=−∞
f(hs′) (14.53)

×Mm([s′a − ka]P̃a − ŝa)Mm([s′b − kb]P̃b − ŝb)Mm([s′c − kc]P̃c − ŝc).
is the interpolation of f(r) onto the discrete real space grid defined by sα =
ŝα/P̃α and 0 ≤ ŝα ≤ P̃α − 1.
Equation (14.52) can be evaluated using a 3D-FFT in order N log N

provided the function, f (conv)(hs), defined on the discrete real space, can be
constructed in a computationally efficient manner. In addition, Eq. (14.52)
is smooth and possesses m − 2 continuous derivatives. Note, if P̃a > m + 1
then each point in the continuous space, {s′a, s′b, s′c}, is mapped to m3 unique
points on the discrete grid indexed by {ŝa, ŝb, ŝc} due to the finite support of
the Mm(p) (see Eq. (14.51)).
It is now a simple matter to generate a computationally efficient and well

defined approximation to the Fourier coefficients, n̄(g), of an electron density



14 New Developments in ab initio Calculations 399

n(r) that is assumed to be nonzero only in the small cell described by hs.
First, given that n̄s(gs), defined in (14.39), exists on a finite reciprocal space,
the identity given in (14.48) holds. Thus, the discrete form of the density can
be inserted into (14.53) and the integrals performed using trapezoidal rule
integration with loss of generality to yield the desired interpolation from the
small cell to the large cell,

n(conv)(hs) =
[
Vs

V

] [
1

Pa,sPc,sPc,s

]

×
Pa,s−1∑

ŝ′
a=0

Pb,s−1∑

ŝ′
b=0

Pc,s−1∑

ŝ′
c=0

∞∑

ka=−∞

∞∑

kb=−∞

∞∑

kc=−∞
ns(hss′)

×Mm([s′a + Sa,s − ka]P̃a − ŝa)Mm([s′b + Sb,s − kb]P̃b − ŝb)

×Mm([s′c + Sc,s − kc]P̃c − ŝc). (14.54)

Here, {Pa,s, Pb,s, Pc,s} are defined by the size of the small cell reciprocal space
(through the cutoff, E(short)

cut ), s′α = ŝ
′
α/Pα,s, Ss = h−1Rc, and Vs/V = detD

while the {P̃a, P̃b, P̃c} are defined by the size of the large cell reciprocal space
(through the cutoff, E(long)

cut ).
The desired plane wave expansion of the density, n̄(g), is constructed by

inserting n(conv)(hs) into (14.52) and performing a 3D-FFT. Note, in the
limit, P̃a = Pa,s, P̃b = Pb,s, P̃c = Pc,s or E

(short)
cut = E(long)

cut , and h = hs, then
n̄s(gs) ≡ n̄(g) because (14.48) is exact for a finite reciprocal space and the Eu-
ler exponential splines are exact at the knots[17,18]. Importantly, Eq. (14.54)
can be evaluated in order Nsm

3 and the (dense) discrete real space grid
spanning the small cell, hs, and the (sparse) discrete real space grid span-
ning the large cell, h, need not be commensurate. In addition, the separable
form of the Mm(p), which is a consequence of the choice h−1hs = D, allows
the required Mm(p) to be evaluated independently in order mN

1/3
s . Thus,

the overall computational cost of constructing n̄(g) is N log N (dominated
by the FFT). Finally, the resulting n̄(g) (i.e. obtained by inserting (14.54)
into (14.52)) is continuously differentiable with respect to the expansion co-
efficients of the orbitals, ψ̄j,s(gs), defined in (14.39).

14.3 Results

In this section, model and realistic surfaces and clusters are examined, first, in
order to demonstrate the effectiveness of the new long range forces techniques.
Next, applications of the new hybrid ab initio-empirical force field technique
to model and realistic systems are given.
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14.3.1 Clusters

The efficacy of the plane-wave based expressions for the energy in clusters is
shown for a series of model and realistic problems.

14.3.1.1 Hartree and Local Pseudopotential Energies
for a Model Density
In order to examine the efficacy of the cluster methodology, a Gaussian den-
sity n(r),

n(r) =
(
κ2

π

)3/2

exp(−κ2r2) (14.55)

n̄(g) = exp
(

− g
2

4κ2

)

.

is first examined. We choose to treat the large system cell size limit, κL >> 1,
where L is the side of the cell. In this limit the Hartree and local external
energy, Eqs. (14.34) and (14.35), are given by

EH =
κe2√
2π

Eloc = −
[
4
π

]1/2

κe2 (14.56)

where the local potential is just Coulombs Law, Vloc(r) = −e2/r. Compar-
isons to the exact results above and those given by (14.34) and (14.35), respec-
tively, are presented in Tables 14.1 and 14.2. Accurate results are obtained
at relatively small box edge, κL ≥ 15. Note, that if the screening function is
omitted, very large errors result.

14.3.1.2 Water Molecule and Hydronium Ion
In Tables 14.3 and 14.4, the behavior of the total energy difference between an
H2Omolecule and an H3O+ ion as a function of box size for LDA [23] and GG-
LDA [24,25], respectively, are given. Uniform convergence with box size at
fixed plane-wave cutoff is observed. In addition, although different functionals
and pseudopotentials are used in the calculations presented in the two tables,
the total energy difference is reproduced accurately (within 70 Kelvin). At
fixed box edge, L = 9 Å , the energy difference convergences rapidly with
cutoff. For example, under LDA, ΔE(180 Ry) = 0.268921 Hartree, ΔE(240
Ry) = 0.269400 Hartree and ΔE(300 Ry) = 0.269497 Hartree. Note, energy
differences between systems with different total charge are ill defined when
the screening function is neglected [14,13]. Indeed, the results indicate that
neglecting the screening function increases the error, markedly.
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Table 14.1. Convergence of the Hartree and local external energies for the model
density of (14.55) using κ = 2 Å −1. The exact energies are EH = 0.422222 Hartree
and Eloc = −1.194225 Hartree. The double asterisk indicates that the screening
function has been set to zero.

L ( Å ) αconvL EH (Hartree) ΔEH(Kelvin) Eloc (Hartree) ΔEloc(Kelvin)
6 3 0.422678 144.0 -1.194382 -49.6
6 4 0.422446 70.7 -1.194230 -1.6
6 5 0.422436 67.5 -1.194226 -0.6

8 3 0.422295 23.1 -1.194282 -17.8
8 4 0.422226 1.3 -1.194226 -0.6
8 5 0.422225 1.3 -1.194225 0.0

8∗∗ 5 0.322194 -29376.0 -1.00735 59008.4

10 3 0.422252 9.4 -1.194225 0.0
10 4 0.422222 0.1 -1.194225 0.0
10 5 0.422222 0.0 -1.194225 0.0

Table 14.2. Convergence of the Hartree and local external energies for the model
density of (14.55) using κ = 1 Å −1. The exact energies are EH = 0.211111 Hartree
and Eloc = −0.5971125 Hartree. The double asterisk indicates that the screening
function has been set to zero.

L ( Å ) αconvL EH (Hartree) ΔEH(Kelvin) Eloc (Hartree) ΔEloc(Kelvin)
10 5 0.211873 240.6 -0.597142 -9.4
14 5 0.211124 4.1 -0.597112 -0.4
14 5 0.211124 4.1 -0.597112 -0.4

14∗∗ 5 0.158094 -16741.5 0.490472 33674.2
18 5 0.211111 0.0 -0.597112 0.0

14.3.2 Surface Ewald Summation

Here, the accuracy and effectiveness of plane-wave based expressions for the
energy on surfaces are demonstrated for a series of model and realistic prob-
lems.

14.3.2.1 Model BCC Surface
The Ewald surface summation, Eqs. (14.29) and Eqs. (14.28), was tested by
considering an out-of-plane bcc surface of point changes (positive charges
in the body center and negative charges on the corner of the cube above
and below the z=0 plane – see Table 14.5). In all cases, rapid convergence
to the exact result (obtained via explicit Madelung summation) is observed
as a function of magnitude of the reciprocal space cutoff (gcut). However,
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Table 14.3. Convergence of the total energy difference between a water molecule
and a hydronium ion for different box lengths using a plane-wave cutoff of Ecut =
180 Ry and αconvL = 7. The H2O molecule was given a O-H bond length of rOH0.99
Å and a HOH bond angle of θHOH=105.8 degrees. The hydronium was given a O-
H bond length of rOH = 0.98 Å and a HOH bond angle of θHOH=116.7 degrees.
Exchange and correlation were treated with the local density approximation and
BHS pseudopotentials were employed to treat core electrons. The quantity ΔΔE =
ΔE(L)− ΔE(12 Å ). The double asterisk indicates that the screening function has
been set to zero.

L ( Å ) E(H2O) (Hartree) E(H3O+) (Hartree) ΔE (Hartree) ΔΔE (Kelvin)
6 -17.180726 -17.450848 0.270122 382.
8 -17.181933 -17.450895 0.268962 16.

8∗∗ -17.182263 -17.549832 0.367569 31154.
10 -17.181977 -17.450888 0.268911 0.
12 -17.182030 -17.450942 0.268912 0.

Table 14.4. Convergence of the total energy difference between a water molecule
and a hydronium ion for different box lengths using a plane-wave cutoff of Ecut =
140 Ry and αconvL = 7. Geometries of the H2O and H3O+ molecules are as specified
in the previous table. Exchange and correlation were treated within the GGA using
the B-LYP functional, and Troullier-Martins type pseudopotentials were employed
to treat core electrons. The quantity ΔΔE = ΔE(L) − ΔE(12 Å ). The double
asterisk indicates that the screening function has been set to zero.

L ( Å ) E(H2O) (Hartree) E(H3O+) (Hartree) ΔE (Hartree) ΔΔE (Kelvin)
6 -17.158608 -17.428996 0.270388 394.
8 -17.160274 -17.429403 0.269129 3.

8∗∗ -17.157504 -17.528353 0.370849 34912.
10 -17.160263 -17.429405 0.269142 1.
12 -17.160260 -17.429399 0.269139 0.

evaluating the surface energy within the supercell approximation (setting
the screening function to zero), yields poor results.
Next, the bcc surface was modified by replacing each negative point charge

by a Gaussian charge density n(r) = (κ2/π)3/2 exp(−κ2|r|2) of width, κ = 4
Å. The total negative charge density was expanded in a plane wave basis and
the total lattice energy evaluated as a function of c-boundary height, Lc and
plane wave basis set size by combining Eqs. (14.29-14.28) with Eqs. (14.34-
14.35). In Table 14.6, the lattice energy with the self energy of the charge
density, Ncellκ/

√
2π, removed, analytically, is presented. Excellent agreement

with the exact results is obtained. The supercell approximation (setting the
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Table 14.5. The Coulomb energy per unit cell for the out-of-plane bcc surface
with a unit cell length of Ls = 2Å for a different number of unit cells, M × M × 1
(φ(Coul,exact) = -0.16400). Lc is the length of the box in the non-periodic direction
and gcut is the reciprocal-space cutoff value The star indicates a calculation carried
out using three dimensional periodicity (φ̂(screen,Coul)(g, αewd) ≡ 0).

M Lc(Å) αewd(Å−1) gcut(Å−1)/2π φcoul(Hartree) Δφ(Kelvin)

1 4.0 6.0 1.5 -0.10451 18789
3.0 -0.16265 426
6.0 -0.16400 0

2 4.0 3.0 1.5 -0.11685 14889
3.0 -0.16398 6
6.0 -0.16400 0

3 6.0 2.0 1.0 -0.13256 9928
2.0 -0.16400 0
4.0 -0.16400 0

∗2.0 4.0 6.0 6.0 -0.37171 -65590
∗4.0 4.0 3.0 6.0 -0.37171 -65590
∗6.0 6.0 2.0 4.0 -0.30254 -43748

screening function to zero), again, converges rather slowly with out-of-plane
boundary height, Lc.

14.3.2.2 Ice Surface with a Defect
An ice surface with a H3O+/OH− defect was studied using an ab initio ap-
proach (valence electrons plus ion cores). The defect was created by perform-
ing an inter-layer proton transfer followed by an adjacent intra-layer proton
transfer. Thus, the ion-pair is separated by a single layer and bridged by
a single water molecule to which the H3O+ donates a hydrogen bond and
from which the OH− accepts a hydrogen bond (see Fig. 14.1). The electronic
structure was treated within the generalized gradient approximation (GGA)
using the B-LYP exchange and correlation function [24,25]. Core electrons
were treated using the norm-conserving pseudopotentials of Troullier and
Martins [26]. Convergence of the total energy of this system as a function
of out-of-plane distance, Lc, at a plane wave cutoff of E

(orbitals)
cut =80 Ry is

given in Table 14.7. Comparison to the supercell approximation (neglecting
the screening function) to the new technique at Lc = 20 Å shows that while
the new method is well converged, the supercell approximation generates a
substantial error in the energetics.
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Table 14.6. The Coulomb energy per unit cell for an out-of-plane bcc surface with
gaussian charge density, n(r) = (κ2/π)3/2 exp(−κ2|r|2), κ = 4.0 Å−1 in the body
center of a 2 × 2 × 1 system of length, Ls = 4Å (φ(Coul,exact) = -0.08200 without
gaussian self energy). A plane wave basis set with an energy cutoff, E

(orbitals)
cut , was

used to describe the gaussian. The star indicates a calculation carried out using
three dimensional periodicity (i.e φ̂(screen,Coul)(g, αewd) ≡ 0).

Lc(Å) Ecut(Ry) E(Hartree) ΔE(Kelvin)

4 25 -0.16170 -25167
50 -0.10897 -8517
100 -0.10768 -8109
200 -0.10768 -8109

6 25 -0.13352 -16269
50 -0.08324 -392
100 -0.08200 0
200 -0.08200 0

8 25 -0.13436 -16534
50 -0.08328 -378
100 -0.08200 0
200 -0.08200 0

∗6 100 -0.21951 -43422
∗8 100 -0.18588 -32803

∗10 100 -0.16512 -26247
∗20 100 -0.12356 -13124
∗32 100 -0.10797 -8201
∗40 100 -0.10278 -6562

Table 14.7. Convergence of the total energy (electronic energy plus the ion-
ion Coulomb interaction) for the ice surface described in the text, in a 9.01
Å ×7.81 Å ×Lc cell, at fixed plane wave cutoff, E

(orbitals)
cut = 80Ry, and vary-

ing box length, Lc. Martins-Troullier pseudopotentials were employed with B-LYP
exchange and correlation functionals The quantity ΔE=E(Lc)-E(27), and the as-
terisk indicates a calculation carried out using three-dimensional periodicity (i.e
φ̂(screen,Coul)(g, αewd) ≡ 0)

Lc(Å) E(Hartree) ΔE(Kelvin)

10 -273.07260 444150
15 -274.47337 1820
20 -274.47906 20
20∗ -274.48209 -940
27 -274.47912 0
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Fig. 14.1. An ice surface with an H3O+/OH− defect generated via an inter-layer
proton transfer followed by an adjacent intra-layer proton transfer. The ion-pair is
separated by a single layer and bridged by a single water molecule to which the
H3O+ donates a hydrogen bond and from which the OH− accepts a hydrogen bond.

14.3.3 Mixed ab initio/Empirical Force Fields

Next, the efficacy of the novel mixed ab initio/empirical force field technique
is tested. Two systems, a single “ab initio” solvated by 63 “empirical” water
molecules and an HCA II enzyme solvated by ≈ 9000 “empirical” water
molecules are considered.

14.3.3.1 Neat Water
A system of 64 water molecules in a cubic box, subject to periodic boundary
conditions, is examined. Although relatively small, a 64 molecule system, has
been shown to be a reasonable model of liquid water. Therefore, a system
of 64 empirical TIP3P model water molecules was equilibrated at the state
point {ρ = 1g/cm3, T = 300K} for 1 nanosecond of simulation time. One
TIP3P water molecule was then replaced by an ab initio water molecule (8
valence electrons and three “ab initio atoms” or “ions”). The electrons were
allowed to interact with the TIP3P model molecules and the H+ and O6+
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ions via pseudopotentials fit by the authors and standard Troullier-Martins
pseudopotentials [26], respectively. In addition, the ions were permitted to
interact with the TIP3P molecules via electrostatic and van der Waals forces.
The B-LYP model, exchange-correlation density functional[24,25] was used
in all the calculations, in conjunction with a small cell plane wave cutoff of
E

(short)
cut = 100 Ry. In Table 14.8, the convergence of the electronic energy
is shown as a function of the large cell plane wave cutoff and Cardinal B-
spline interpolation order. As can be seen from the table, rapid convergence
with both parameters is achieved. In addition, the small cell edge, Ls, can
be taken to be much less than the large cell edge without loss of accuracy.
Note, Fig. 14.2, shows the radial distribution function of a 50/50 mixture of
TIP3P-ab initio water molecules, indicating the model is reasonable.

Fig. 14.2. The oxygen-oxygen radial distribution function for a system consist-
ing of 16 TIP3P water molecules and 16 ab initio molecules at the state point
{ρ = 1g/cm3, T = 300K} is presented (dotted line). Comparisons are made to dis-
tribution functions generated using fully ab initio (solid line) and a fully empirical
model (dashed line).
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Table 14.8. The total electronic energy of a single ab initio water molecule im-
mersed in a bath of TIP3P molecules as a function of large cell plane cutoff
and spline interpolation order. The large cell size was fixed by the state point,
Ll = 12.43Å, on edge. The small cell cutoff was fixed at 100Ry. The electro-
static division parameter was set to α = 6/Ls and ΔEtot = Etot − E

(std)
tot where

E
(std)
tot = −20.28767 is the result of a standard calculation with Ls = Ll = 12.43Å.

Ls E
(long)
cut m Etot ΔEtot

(Å) (Rydberg) (Hartree) (Kelvin)

6 4 4 -20.27980 2480
6 -20.28127 2020
8 -20.28133 2002

8 4 -20.28108 2080
6 -20.28133 2000
8 -20.28134 2000

8 4 4 -20.28684 260
6 -20.28718 150
8 -20.28718 150

8 4 -20.28711 175
6 -20.28718 150
8 -20.28718 150

9 4 4 -20.28773 -20
6 -20.28790 -70
8 -20.28790 -70

8 4 -20.28787 -60
6 -20.28790 -70
8 -20.28790 -70

14.3.3.2 HCA II in Water
Last, an HCA II enzyme solvated in liquid water, is considered. In detail,
the 260-residue HCA-II enzyme (complete with catalytic zinc), was solvated
by 8,859 waters, for a total of 30,649 atoms. Clearly, a fully ab initio treat-
ment of such a large system is not feasible, at present. However, a hybrid
model, wherein only the catalytic zinc, the side-chains of active site residues,
HIS 94, HIS 96, HIS 119, THR 199, GLU 106 and the five water molecules
in the active site are treated using an ab initio description, can be studied.



408 Glenn J. Martyna and Mark E. Tuckerman

Thus, 320 valence electrons of 80 atoms (see Fig. 14.3) are treated at an ab
initio level while the remainder of the system is treated using the empiri-
cal CHARMM22 all-atom parameter force field which includes TIP3P water
model[27]. Briefly, the electrons are assumed to interact with “ab initio”
atoms via standard Troullier-Martins pseudopotentials [26] and with “empir-
ical atoms” via pseudopotentials fit by the authors (see also [28,29]), and the
B-LYP, density functional[24,25] was employed to treat exchange and correla-
tion. Ab initio atoms (ion-cores) were permitted to interact with neighboring
“empirical atoms” via appropriate bond, bend, torsion, one-four, van der
Waals and Coulomb forces, parameterized, by the authors. The parameters
were obtained by enforcing good agreement between mixed models, fully em-
pirical models and fully ab initio models of relevant fragments. For example,

Fig. 14.3. Human carbonic anhydrase treated using the mixed ab initio/empirical
force field based approach described in the text. The full enzyme wherein the wire
frame represents atomic sites and the blue cloud represents the electron density of
the valence electrons associated with “ab initio atoms”.



14 New Developments in ab initio Calculations 409

Table 14.9. The total electronic energy of the active site of HCA II immersed
in a bath of TIP3P molecules and CHARMM22 model amino acid residues as a
function of large cell plane cutoff and spline interpolation order. The large cell
size is fixed by the state point, 66.7Å, on edge. The small cell size was fixed at
18Å on edge and the small cell cutoff was fixed at 70Ry. The electrostatic division
parameter was set to be α = 9/Ls and the accuracy measure is defined to be
ΔEtot = Etot(E

(long)
cut , m) − Etot(4, 8).

E
(long)
cut m Etot ΔEtot

(Rydberg) (Hartree) (Kelvin)
0.5 6 -2329.31984 9200

8 -2329.33018 5900

2 6 -2329.34896 32
8 -2329.34905 3

4 6 -2329.34905 3
8 -2329.34906 0

the minimum energy geometry of hybrid model CH3CO− (HIS)−NHCH3
deviates at most 2 degrees in the bend angles and 0.02Å in the bond lengths
from the standards (CHARMM22 and fully ab initio treatments as appropri-
ate).
The HCA II/water system described above was prepared by taking the

crystallographic configuration of the enzyme (PDB identification label,
“1RAY”) [30] and immersing it in TIP3P water. Next, a 1 ns constant tem-
perature molecular dynamics calculation was performed using a fully empir-
ical treatment[27]. This was followed by a 1 ns constant pressure molecule
dynamics calculation. At this point, the hybrid model was introduced. In
Table 14.9, the convergence of the electronic energy for a representative con-
figuration taken from the simulation of the hybrid model, is shown versus the
large cell, plane wave cutoff and the Cardinal B-spline interpolation order.
As in previous example, accurate energies are obtained for low spline orders
and plane wave cutoffs. The results, therefore, indicate that large complex
systems can be studied efficiently using the new methodology.

14.4 Conclusion

In this review article, recent advances in plane-wave based ab initio molecular
dynamics methodology were discussed. In particular, a generalized treatment
of electrostatic interactions that permits surfaces and clusters to be modeled
as easily and naturally as fluids and solids was given[8,9]. In this way, many
important processes in systems with restricted periodicity can now be exam-
ined. Thus, catalytic behavior at surfaces, and reactions in clusters, can be
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modeled effectively. Next, an extension of plane-wave based ab initio methods
to model systems in which the electrons are assumed to be localized in a single
spatial area, within a large chemically inert bath, in a computational efficient,
accurate and controlled manner, was given[12]. An application to a mixed ab
initio/empirical force-field simulation study of a full 30,000 atom system, the
enzyme, HCA-II solvated by approximately 9000 water molecules, with 320
valence electrons of 80 atoms treated at an ab initio level of detail, was pre-
sented. These new methods and the results that they enable, demonstrate the
tremendous ability of ab initio MD calculations to impact important areas of
physics, chemistry, materials science and biology.
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Abstract. Time and length scales accessible to ab initio molecular dynamics sim-
ulations are necessarily limited. This is the price one pays for an “in principle”
unbiased description of chemical reactivity. We address the problem of times scales
focusing on the determination of the reaction path and mechanism of chemical re-
actions using advanced sampling techniques. Further in the discussion about the
calculation of thermochemical constants both, time and length scale problems are
covered. Finally, new techniques for extending system sizes with density functional
theory are presented.

15.1 Introduction

Ab initio molecular dynamics (AIMD) [1] is gradually becoming a well es-
tablished tool for the study of physical [2], chemical [3] and biochemical [4]
systems. This method has enabled direct simulations of chemical reactions
in extended and complex environments. However, typical characteristic time
windows that can be covered with first-principles Car-Parrinello simulations
are currently limited to few tens of picoseconds, in vast contrast to realistic
time scales of dynamical processes in chemical and biological systems that
often extend into the ms-hours range. Hence, rare conformational transition
or reactive events are rarely observed spontaneously during such MD runs.

Ab initio molecular dynamics simulations have made huge progress in re-
cent years. New developments in algorithms and more powerful computers
make it possible to simulate larger systems for longer times. Nevertheless,
there is the need for simulations of even larger systems as there is the need
to be able to go beyond the time scales accessible by todays methods. The
simulation of the electronic structure of biomolecules (especially DNA), sys-
tems with long range interactions (strongly ionic systems), electrochemical
system, or the behavior of nano structures are of major importance. However,
systems of this size will not be accessible with traditional algorithms used in
electronic structure theory. These algorithms have a scaling behavior that
ranges from N3 to N8 for independent particle models to highly accurate
couple cluster theory, respectively, where N denotes the system size.
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In the contribution of Rothlisberger in Sect. 15.2 the time scale problem
is addressed with a focus on the reaction path and mechanism of chemical
reactions. In Sect. 15.3 Sprik discusses the time and length scale problems
involved in the calculation of thermochemical constants. In the final Sect.
15.4 new techniques for extending system sizes are reviewed by Hutter.

15.2 Overcoming the Time Scale Barrier:
Enhanced Sampling Techniques
for ab initio Molecular Dynamics Simulations

15.2.1 Time Scale Limitations
in ab initio Molecular Dynamics Simulations

The development of new methods that can significantly extend the time scale,
or enhance the sampling efficiency of MD simulations is a longstanding topic
of research and several schemes have been proposed for this purpose.[5,6,7,8,9,10,11]
Among the particularly powerful approaches in this respect is the introduc-
tion of well-controlled modifications of the potential energy surface (PES)
designed in such a way as to lower activation free energies and increase the
rate for activated events [11]. Within transition state theory, one can estimate
that for a decrease in potential depth by Vbias the rate constant increases ex-
ponentially by ≈ eβVbias . The same exponential acceleration can be expected
in the convergence of the free energy. It is possible to obtain the corrected
results for the original system (with Hamiltonian H and inverse tempera-
ture beta) from the properties of the biased ensemble (described with H ′ and
beta′). The thermodynamic average of a function f(p, q) can be written as

< f(p, q) >βH = < f(p, q)eβ
′H′−βH >β′H′

1
< eβ′H′−βH >β′H′

(15.1)

This equation shows that the average of the function f of the system with
Hamiltonian H (< f(p, q) >βH) can be obtained as a function of the averages
of two different functions, f(p, q)eβ

′H′−βH and eβ
′H′−βH , of a system based

on the HamiltonianH ′. IfH ′ is chosen in an appropriate way the new averages
< f(p, q)eβ

′H′−βH >β′H′ and < eβ
′H′−βH >β′H′ converge faster than the

original one. The technique will work efficiently as long as sufficiently many
configurations sampled with the Hamiltonian H ′ are significant also for the
system with Hamiltonian H, so that the reweighting factor eβ

′H′−βH is non-
vanishing during a significant part of the trajectory. An appropriate choice
of the bias Vbias is therefore essential for the efficiency of the method. In the
following, we shall give an example for an atomic as well as for an electronic
bias potential, which have both proven to be particularly useful in the context
of AIMD and mixed quantum mechanical/molecular mechanical (QM/MM)-
AIMD [12] simulations.
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Fig. 15.1. Free energy profile for methyl group rotation in ethane, as obtained
from an unbiased AIMD run at 500 K (full line). The dashed curve is the potential
energy calculated on a grid of 10 degrees and is given for comparison

15.2.2 The Use of Classical Force Fields as Bias Potentials
for an Enhanced Sampling of Conformational Transitions

A straightforward way to construct suitable bias potentials, especially appro-
priate for the enhanced sampling of conformational transitions, is the use of
selected terms of a classical force field. [13] The configurational space can be
restricted by including only specific terms (such as e.g. torsional potentials).
Clearly, if the force field is sufficiently close to the ab initio results then the
resulting potential (V ′ = V + Vbias) will be nearly flat, and the trajectory
can visit all points in space without having to cross potential energy barri-
ers. It is important to point out that the converged values for the sampled
properties do not depend on the classical force field, and are thus of ab initio
quality. Only the rate of convergence depends on the quality of the force field.
Furthermore, this approach is inexpensive in both computational time, and
implementation effort.
As an illustrative example, we show in Fig. 15.1 the one dimensional free

energy profile for rotation of the methyl groups in ethane. The barrier for
rotation[14], that is the energy difference between the eclipsed and the stag-
gered conformation, is ∼2.6 kcal/mol. The severe time scale barrier inherent
to ab initio MD is clearly apparent. Even at 500 K, where ethane can often
be regarded as a free rotator, direct ab initio molecular dynamics fails to
sample the three symmetry equivalent minima homogeneously. Through the
application of the classical bias method presented here these shortcomings
can be fully overcome. Here, the classical bias potential was constructed in
the form of a torsional potential 1

2V0(1 − cos(3φ)). The distribution of the
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Fig. 15.2. Probability density (gray) and corrected probability density (black) dis-
tribution for the torsional angle from the biased run

torsional angle sampled during the simulation is shown in Fig. 15.2, together
with the corrected distribution as obtained using (15.1). Clearly, the three
equivalent minima are now sampled almost equally. The free energy (F ) is
obtained from F (x) = −kT ln(P (x)), where P is the sampled distribution.
This free energy profile is shown in Fig. 15.3 together with the potential en-
ergy profile. By inspecting the deviation from three-fold symmetry we can

Fig. 15.3. Free energy profile from the biased run (full line) in comparison with
the potential energy (dashed line)
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estimate that the accuracy is better than 0.5 kcal/mol over the whole profile.
Thus, the statistical error is certainly smaller than the error due to the ap-
proximations made to the exchange and correlation functional within DFT,
and the neglect of the quantum nature of the hydrogens. A analogous strat-
egy has been applied for a determination of the two dimensional free energy
surface for dihedral transitions in peroxynitrous acid (ONOOH) [13].

15.2.3 Finite Electronic Temperatures
as Electronic Bias Potentials

First-principles molecular dynamics simulations are especially valuable for
complex systems in which a reaction coordinate is not known a priori and
may involve a nontrivial combination of multiple degrees of freedom. Unfortu-
nately, this approach is currently limited by the very short time window that
can be simulated which restricts its application to the spontaneous obser-
vation of fast processes with low activation barriers. Usual simulation times
are 10-100 ps, i.e. orders of magnitude shorter than what would be needed
in order to observe chemical reactions with rates in the millisecond to hours
range implying typical activation barriers of the order of 10 - 30 kcal/mol. At
present, such cases can only be studied if some information about a possible
reaction pathway is known so that it is possible to constrain the system along
an a priori chosen coordinate in order to guide it over the activation barrier
[5,6]. Since this information is not always available, and an inappropriately
chosen coordinate can even be misleading, it is of primary importance to
develop methods that are able to explore possible reaction pathways and po-
tentially reactive configurations in an efficient and unprejudiced way. We have
recently proposed a novel method that is capable to specifically enhance the
sampling of rare reactive events in chemical systems [15]. A lot of information
about the intrinsic chemical reactivity of a system is directly encoded in its
electronic structure. This simple fact has been used by chemists for decades
and lies at the roots of the overwhelming success of frontier orbital theory
[16]. Within DFT, this intimate link between electronic structure and chemi-
cal properties can be formalized in the concepts of reactivity indices based on
chemical hardness and softness [17]. Within a frozen orbital picture, the high-
est o ccupied orbital(s) (HOMO(s)) determine the electron-donor properties
of a reactive system, whereas the lowest occupied orbital(s) (LUMO(s))are
relevant for its electron-acceptor behavior and a linear combination of HO-
MOs and LUMOs is relevant in the context of radical reactions [17]. This
suggests that a method that uses the electronic structure to construct a bias
potential could be especially efficient in exploiting chemically relevant regions
of phase space without having to resort to a priori assumptions about likely
reaction pathways based on atomic coordinates. The simple electronic bias
potential presented in Ref. [15] exploits the electronic structure in a straight-
forward way by simulating the system at an increased electronic temperature
using the DFT free energy functional introduced by Mermin [18]. A simple
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form of this free energy functional is given by[20]

F [{Rl}, T ] = min
{ψi},{fij}

∑

ij

fji

∫

dr
(
ψ∗i T̂ + V̂extψj

)
+EHxc[n, T ]−TS[{fij}].

(15.2)
Here EHxc is the Hartree and the exchange and correlation, S is the en-
tropy term given by −tr(f ln(f) + (1 − f) ln(1 − f)). The solution of the
equations reduces to assigning occupation numbers (fi) to the Kohn-Sham
single particle states wavefunction ψi using the Fermi-Dirac distribution i.e.
fi = 1/(eβ(εi−μ)+1) where εi is the eigenvalue of the wavefunction (ψi), and
converging the wavefunctions self-consistently. The free energy can be used as
a potential energy surface for the dynamics of the ions, and recent advances in
computational methodology made it possible to use the free energy functional
for MD.[19,20,21] Through the introduction of a finite electronic tempera-
ture, electron density is transferred from the highest lying donor orbitals of
the entire reactive system to its lowest lying acceptor orbitals, i.e. its lowest-
energy virtual states. Thus, for a fixed electronic temperature the free energy
will be lowered more for a system with a small gap than for systems with a
large gap. We can thus consider the difference between the finite temperature
(FT) potential (VFT ) and the zero temperature (ZT) potential (VZT ) to be a
bias potential (Vbias = VFT − VZT ) that enhances the exploration of regions
with small electronic gaps. This particular choice of electronic bias potential
can be further rationalized using concepts from chemical reactivity theory,
such as the maximum hardness principle [22,23,24,25,26] which states that
the ground state of any system has a maximal hardness. This implies, that
through the admixture of virtual excited states the system becomes softer, i.e.
more reactive towards soft, orbital-driven reactions. The electronic bias po-
tentials we present here can therefore be expected to work best for this type of
reactions whereas typical hard reactions are electrostatically driven and can
often be accelerated in more obvious ways. In order to examine the efficiency
of this approach in a quantitative manner, we calculated energy profiles along
simple reaction coordinates for a set of prototypical chemical reactions in gas
and condensed phase (including bond dissociation, proton and electron trans-
fer as well as isomerization reactions) and compared the barrier heights at
finite electronic temperature with the 0 K results. In all cases, we found that
setting the electronic temperature such that fLUMO ≈ 0.05 gave a significant
lowering of the barriers while leaving the overall location of the minima un-
changed. An example is given in Table 15.1 for the dissociation of the peroxy
bond in ONOOH. As demonstrated in Table 15.1, substantial gains in sam-
pling efficiency (e.g. up to 10 orders of magnitude!) can be achieved in this
way. This simple method works surprisingly well in the case of orbital-driven
chemical reactions that are dominated by the HOMO and LUMO orbitals for
which impressive acceleration factors of several orders of magnitude can be
achieved in a straightforward manner. This approach should be considered as
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Table 15.1. O-O bond dissociation in ONOOH. ΔE is the lowering in dissocia-
tion energy in kcal/mol, Enhancement is an estimate of the corresponding increase
in sampling efficiency for a simulation at room temperature, or, equivalently, the
increase in the rate constant at room temperature (≈ exp(ΔE

kT
))

Temperature (K) ΔE (kcal/mol) Enhancement
1000 0 1
2000 1 10
4000 8 5e+06
5000 11 8e+09

a first step towards more advanced electronic bias methods that make direct
use of the chemical information inherent in the electronic structure.

15.3 Computation of Acid Dissociation Constants

15.3.1 Time and Length Scales in Aqueous Chemistry

Liquids, by nature, require longer runs than solids or surfaces, since their
stability depends on dynamical fluctuations. The liquids of interest to use
here are aqueous solutions. The crucial time scale in these systems is the
≈ 3 ps lifetime of a hydrogen bond ( for a review see for example Ref. [27]).
Related to this is the ≈ 1− 2 ps hopping time for excess protons in solutions
at non-neutral pH[27]. These are fairly favourable numbers from the point
of view of ab initio MD studies of chemical reactions in aqueous solution. It
means that a run in the order of 5-10 ps might just be long enough to allow for
resolvation of reactants after a change of charge or polarity during a reaction.
Also redistribution of surrounding excess protons is possible in this length of
time. Generation of trajectories of a duration of 10 ps for systems of 30-50
water molecules plus one or two small solute molecules are now standard and
no longer represent the huge computational effort it did ten years ago when
the first simulations on 32 molecules of liquid water were carried out[28].
The opening up of this computational “window” is exploited by an in-

creasing number of initio MD studies of elementary reactions in aqueous
chemistry (see for example Refs. [29] - [39]). Reactions involving transport of
excess protons[29,30] and also dissociation of strong acids[31] occur sponta-
neously on this time scale, and could be studied in all microscopic detail for
the first time. However, while the solvent response falls (more or less) in the
ab initio time window, almost all reactions of interest involve some formation
or rearrangement of chemical bonds of the reactive solutes which is either
endothermic or activated and, hence, impossible to observe in 10 ps. Special
sampling techniques are needed which force these rare events to occur. The
challenge, of course, is to have the system find a trajectory in phase space as
close as possible to the true, but unknown, reaction path. A further condi-
tion, of particular importance in liquids, is that these methods can provide
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us with an estimate of the free energy profile, since in a fluctuating finite
temperature environment transition paths are not unique.
A variety of techniques has been developed for this purpose some of which

are discussed in detail elsewhere in the present proceedings. Early ab initio
MD applications relied on control of some predetermined order parameter
by mechanical constraints[5]. While computational efficient, the coordinate
driven approach has the drawback that it can easily produce inaccurate or
even erroneous results if the reaction coordinate is a poorly described by the
chosen order parameter. An alternative, special to ab initio MD method, is
increasing the electronic temperature[15]. The best solution to the rare event
sampling problem is perhaps the transition path sampling method, which
was recently developed by the Berkeley group of David Chandler[8,9]). This
method is free of any dynamical bias. Only specification of a initial (reactant)
and final (product) state is required (see also Ref. [10]). A pioneering ab
initio MD application in the condensed phase of this method can be found
in Ref. [38].

15.3.2 Determination of Free Energy Profiles

A free energy profile Δw (q) describes the variation of free energy with an or-
der parameter q (not necessarily identical to the reaction coordinate). Δw (q)
is related to the work performed during reversible changes of the order pa-
rameter

Δw (q) = w (q)− w (q0) = −
∫ q

q0

dq′f (q′) (15.3)

where f (q) is the mean force and q0 is the value of q at some reference
state[40]. Equation (15.3) forms the basis of the thermodynamic integration
method for determination of relative free energy. What makes it a practical
computational scheme in MD simulation is the relationship between mean
force f (q) and the mechanical force fq exerted on the order parameter when
held fixed at a specified value q′. f (q) can be estimated by the time average
of fq

f (q′) = 〈fq〉q=q′ (15.4)

where the subscript attached to the brackets denotes a constrained average.
If, moreover, the method of constraints is used fq can be obtained from the
corresponding Lagrange multiplier[6].
Clearly for determination of activation energies it is crucial that the or-

der parameter not only distinguishes initial and final states but also gives
an accurate representation of the reaction path connecting these two states.
For some elementary reactions this condition can be met, to a good approx-
imation, by simple geometric order parameters such as distance[32,35,36],
dihedral angles[33,34] and coordination numbers[37] of selected atoms. How-
ever, even in these seemingly simple chemical processes rearrangements of the
environment (e.g. conformation and solvent degrees of freedom) can cause
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complications and the results of coordinate driven methods need to be inter-
preted with caution[9]. On the other hand, if we are only interested in relative
free energies of reactant and products the demands on the transition path
are less stringent. In principle any reversible path linking reactant and prod-
uct could be used. In practice reversibility can be difficult to achieve along
an unstable path. Therefore, for thermochemical calculations, the method of
constraining approximate reaction coordinates remains an attractive option
which may well have advantages in terms of computational efficiency.

15.3.3 Statistical Thermodynamics of Gas-Phase Equilibria

In thermochemical studies the ultimate aim is estimation of the equilibrium
constant of a reaction, which can be directly compared to experiment. The
equilibrium constant Kc for a dissociation reaction AB → A + B is defined
as

Kc =
[A] [B]
co [AB]

(15.5)

where [X] denotes the equilibrium concentration of componentX = A,B,AB,
i.e. [X] = NX/V if NX is the number of particles of species X and V is the
volume of the container. co = 1 mol dm−3 is the concentration in the stan-
dard state. Assuming the mixture has been produced by dissociation of an
initially pure sample of N dimers, Kc can also be written in terms of a disso-
ciation fraction fraction α = NA/N = NB/N (hence, N = NA +NAB). This
expression, which is needed later, is

Kc =
α2

1− α
N

V co
(15.6)

How to compute Kc (or alternatively α) from the relative free energy Δw
obtained by thermodynamic integration? To see the relation between these
quantities we first consider gas-phase dissociation. The equilibrium will lie
strongly on the left(reactant side) because of the large energy required to
break the dimer bond. In the gas-phase this energy is simply the difference
Δε between the (ground-state) energies εX of the dimer and the atomic frag-
ments:

Δε = εA + εB − εAB > 0 (15.7)

The textbook statistical thermodynamics expression for the dissociation con-
stant is

Kc =
vo

Λ3
μ

(qvib qrot)
−1
e−Δε/kBT (15.8)

where vo = 1/co = 1660 Å
3
. The small exponent for the endothermic disso-

ciation process is multiplied by a prefactor consisting of the (inverse) vibra-
tional and rotational partition function of the AB dimer indicated by qvib
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respectively qrot and a translational contribution depending on the thermal
wavelength associated with the reduced mass

Λμ =

√
h2

2πμkBT
(15.9)

Typical values for the dimer partition functions are qvib ≈ 1 and qrot ≈ 50.
Thermal wavelengths of atoms, on the other hand, are very small Λμ ≈
0.01 − 0.1Å and therefore Λ3

μ � vo, leading to substantial enhancement of
the prefactor. The explanation for this effect, favouring the product, is the
huge increase in entropy due to the creation of an extra unbound translational
degree by the dissociation. The result is a significant reduction of the standard
dissociation (Gibbs) free energy

ΔG o

kBT
= − lnKc =

Δε

kBT
− ln v

o

Λ3
μ

+ ln qvib + ln qrot ≡ ln 10× pKdiss (15.10)

The last identity defines the pK for dissociation. Measured in terms of a
contribution to the pK the translational entropy term in (15.10) can be as
large as several units.

15.3.4 Reversible Work and Equilibrium Constants

In order to generalize this fundamental result from the statistical thermody-
namics of gas-phase reactions to solutions we first notice that in solution the
role of Δε is taken over by the reversible work Δw (Eq. (15.3)) for breaking
up the dimer and separating the two fragments A and B, which now can also
be ionic. Δw contains already an entropy contribution, but this is the entropy
related to the solvation of reactants and products and should be distinguished
from the translational entropy term appearing in (15.10). This term, arising
from the partition function from a free quantum particle, cannot be straight-
forwardly transferred to an interacting particle in a dense liquid. One way to
circumvent this problem is by a thermodynamic (Born-Haber) cycle, taking
the dimer out of solution to vacuum, and then, after dissociation, reinsert-
ing the product atoms back into solution(see for example [41]). This requires
computation of the solvation free energies of all components involved, which
is relatively easy to do when the solvent is modelled by a reaction field, as is
the case in many quantum chemistry code, but is a very difficult calculation
in the small periodic model systems used in ab initio MD.
More in the spirit of atomistic simulation (MD or Monte Carlo) is the

purely classical expression for the dissociation equilibrium constant derived
by David Chandler in his textbook on statistical mechanics (DC)[40]. This
expression, which is valid in the gas-phase and liquid alike, is based on the
reversible work theorem: The theorem states that the reversible work w (r)
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for bringing particles together from infinity to a distance r apart can be used
as an effective potential to generate the radial distribution function g (r)

g(r) = e−βw(r) (15.11)

with β = 1/kBT . The function w(r) in (15.11) is often referred to as the
potential of mean force (PMF). It is equal to the mean force integral of (15.3)
w.r.t to r provided w (r0) = 0 (see below). However, the radial distribution
function (RDF) can be interpreted as a (conditional) probability distribution
for distance. Thus, by introducing a distance criterion Rc for bonding

|rA − rB | = r
{≤ Rc bonded AB dimer reactant
> Rc A + B dissociation product (15.12)

the equilibrium constant for association (dimerization) can be directly ob-
tained as the integral of the RDF

K−1
c = co

∫ Rc

0
dr 4πr2g(r) (15.13)

(For more details see DC pag. 212). In accordance with (15.5) concentration
is measured in units of standard hence the factor co in (15.13). Substitution
of (15.11) gives

K−1
c = co

∫ Rc

0
dr 4πr2e−βw(r) (15.14)

which relates the equilibrium constants to the PMF. To verify that (15.14)
indeed accounts for the creation of translational entropy we consider the
simple example of a model gas-phase dimer bound by a square well potential

v(r) =
{−Δε r ≤ Rc

0 r > Rc
(15.15)

In the low density limit the PMF can be replaced by the pair potential.
Inserting (15.15) into (15.14) we find

Kc =
3vo

4πR3
c

e−Δε/kBT (15.16)

Similar to (15.8) the standard volume per particle vo = 1/co = 1660 Å
3
is

compared to a molecular “small” volume, namely the volume Vc = 4/3πR3
c

of the sphere with radius Rc. However, since in general Vc � Λ3
μ the classical

prefactor in (15.16) will be much smaller than the quantum prefactor in
(15.8).
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15.3.5 Controlled Dissociation in a Small Box

The formalism of Sect. 15.3.4 reduces the problem of time scales for compu-
tation of equilibrium constants to a question of reversibility. The finite size
effects remain, which we will address now. Distances in a periodic cubic cell
of size L are limited to a maximum of Rmax ≈ L/2. PMF’s determined under
periodic boundary conditions are, therefore, necessarily relative to the value
at Rmax

Δw (r) = w (r)− w (Rmax) (15.17)

Using (15.14) without further corrections yields a “truncated” equilibrium
constant

K
−1
c = c0

∫ Rc

0
dr 4πr2e−βΔwAB(r) = e βw(Rmax)K−1

c (15.18)

In general w (Rmax) < 0, leading to underestimation of the pK for dissocia-
tion

pKdiss = pKdiss +
w (Rmax)
2.303 kBT

< pKdiss (15.19)

At 300 K a pK unit corresponds to 1.4 kcal mol−1. Therefore, for the typical
ab initio MD cell size of L ≈ 10 Å errors can be substantial. Interaction be-
tween periodic images gives rise to further inaccuracies, distorting the mean
force f(r), which by symmetry must vanish at r ≈ L/2. For heterolytic reac-
tions in a polar solvent involving charge separation, errors can be expected
to be especially large. For these reactions estimated pK’s can be too low by
several pK units.
The systematic bias due to system size can be reduced by modifying

Chandler’s procedure for computing dissociation constants making explicit
use of the “tight” conditions prevalent in small model systems. We will focus
on the determination of the pKa of a weak acid, i.e. the dissociation constant
of the reaction AH → A− + H+. In view of the active participation of the
solvent, this reaction is an elementary but important example of application
of ab initio MD methods to aqueous chemistry. Because of the restrictions in
system size the number of AH species is limited to a single molecule, which is
subjected to controlled dissociation. This enables us to fix the reference free
energy w (Rmax) by normalizing the RDF of the acid H w.r.t its conjugate
base A to unity

1
V

∫

V

dr e−βΔw(r) = 1 (15.20)

where V = L3 is the volume of the cell. The rationale behind (15.20) is that
there is only one excess proton, which can only be in the MD cell and nowhere
else. Because of this constraint on the number and position of leaving protons,
the dissociation fraction α can be directly obtained from the coordination
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number computed from the normalized RDF of (15.20).

α (Rc) = 1−
∫ Rc
0 dr 4πr2e−βΔw(r)

∫ Rmax
0 dr 4πr2e−βΔw(r)

(15.21)

Rc is again the critical distance for bonding defined in (15.12). To simplify
the integration we have approximated the integral over the cubic volume
in (15.20) by in an integral over a sphere of radius Rmax. The dissociation
fraction can be converted to a equilibrium constant using (15.6) giving for
the pKa

pKa = − 1
2.303

{

ln

[
α (Rc)

2

1− α (Rc)

]

+ ln
vo
vm

}

(15.22)

The constant vm = V/N is the volume per base A (whether dissociated or
not). In this case N = 1. A pK computed according to the scheme of (15.22)
is not identical to the result obtained from (15.14). The discrepancies become
increasingly significant for Rc approaching Rmax: whereas the pKa predicted
by (15.14) remains finite, the pKa of (15.22) diverges since the dissociation
fraction of (15.21) by vanishes by construction for Rc = Rmax.

15.3.6 Computation of the Water Dissociation Constant

High on the list of acid dissociation constants to be calculates is the ionization
product of liquid water. This quantity is defined as

Kw = (co)
−2 [H3O+] [OH−] (15.23)

Kw corresponds formally to a dissociation constant at unit activity of the
acid (=solvent). Kw can be computed, as before, by expressing it in terms of
a dissociation fraction

Kw =
(
α (Rc)N
V c o

)2

(15.24)

and approximating α (Rc) by (15.21). Now, however, since all “acid” mole-
cules are equivalent, N is the total number of water molecules in the cell of
volume V . Hence, under ambient conditions, N/ (V co) = 55.4. Substituting
in (15.24) and taking the base 10 logarithm we find

pKw = −0.868 {ln [α (Rc)] + ln 55.4} (15.25)

Auto dissociation of liquid water has developed into a popular subject
for initio MD simulation. Here we mention four recent calculations all based
on very similar pseudo-potential plane wave methods but differing in the
rare event sampling techniques. Refs. [36] and [37] use mechanical constraint
methods to deprotonate a selected water molecule: one of its OH bonds is
stretched until it breaks. In the process the proton is transferred to a second
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hydrogen bonded water molecule which plays the role of acceptor. In Ref. [36]
the bond is broken by step wise increase of the length ROH. In Ref. [37] proton
release is enforced by reducing the proton coordination nH of a specified H2O
oxygen from two to one. Water auto-dissociation was also the first condensed
ab initioMD problem to which full scale transition path sampling was applied,
revealing a number of details about the cooperative hydrogen bond motion
driving the transfer[38]. Ref. [39], is a study of accelerated dissociation under
conditions of elevated temperature and pressure.
The free energy profiles obtained by the constraint calculations of Refs. [36]

and [37] provide us with unique material to test the procedure for pK compu-
tation since these data should be directly comparable (for technical details,
such as density functionals, pseudo potentials etc, we refer to the original
papers). Setting r = ROH the Δw (ROH) of Ref. [36] can be immediately
inserted in (15.21) giving an estimate of the dissociation fraction. The corre-
sponding pKw computed according to (15.25) is plotted as a function of the
bonding radius Rc in Fig. 15.4.

1.0 1.2 1.4 1.6
coordination radius Rc [A]

0

10

20

pK
W

Fig. 15.4. pK for the auto-dissociation of liquid water computed according to
(15.25) as a function of the critical radius Rc for OH bonding. Compared are the
results for two independent calculations using different constraint methods to en-
force bond breaking. Solid circles are based on the free energy profile of Ref. [36]
obtained using a OH bond constraint. The data for the open squares were generated
using a proton coordination constraint[37]. Both calculations were performed for a
32 water molecule sample in a cubic box of size 9.86Å using the BLYP functional.
Crossing dashed lines indicate the value of Rc reproducing the experimental pKw.
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The free energy profile Δw (nH) of Ref. [37] for proton coordination num-
ber changes can be subjected the same treatment after having been converted
to a dependence on OH distance. The straightforward way to do this is to
search for the proton H∗ which is second nearest to the coordination con-
strained oxygen atom O∗. This must be the leaving proton (the nearest pro-
ton is the proton that remains). Under a coordination constraint on O∗ the
distance RO∗H∗ is a dynamical quantity (fluctuation in time (see Ref. [37],
note that even the identity of H∗ can change). So, we identify the average
over a trajectory at a given fixed value of nH with the order parameter r in
(15.21). The corresponding Δw(r) function is then obtained by transforming
the Δw (nH) profile according to the inverse the r (nH) relationship. The pKw

is again determined using (15.25). The result is also displayed in Fig. 15.4.
Considering that the two curves in Fig. 15.4 were generated using two rather
different constraint schemes the agreement can be seen as a validation of our
approach. At this point a comment on the approach of ref. [37] is in order.
In this work, which provided the data for the coordination constraint curve
in Fig. 15.4, the pKw is estimated by simply the free energy difference be-
tween the equilibrium OH distance and the dissociated state. A value of 13
was obtained. This approach, however, is not correct. The agreement with
experiment is presumably the result of fortuitous cancellation of the errors of
the size effect and the neglect of the translational entropy of the dissociation
product.
As will be evident from Fig. 15.4 the computed pKW is strongly dependent

on Rc making the choice of this parameter critical. In spite of this, the radius
of Rc = 1.23Å reproducing the experimental pKw = 14 (see Fig. 15.4) is
entirely consistent with accepted criteria for maximum extension of OH bond
length. This observation suggests a pragmatic solution to the dilemma of the
specification of Rc: We simply treat Rc as an adjustable parameter and use
the pKw data of Fig. 15.4 to fix its value. The resulting Rc of 1.23Å can
be applied to compute the pKa of other weak acids involving ionization of
hydroxyl groups.

15.3.7 Application to Weak Acids and Evaluation of Method

A first such “calibrated” calculation of acid dissociation constants is reported
in Ref. [42]. The weak acid studied there is aqueous P (OH)5. This molecule
is a model for a family of phosphoranes occurring as intermediates in bio-
chemical processes such as RNA hydrolysis. Phosphoranes are compounds
containing a central phosphor bonded to five atoms, in this case all oxygen,
in an approximately trigonal bipyramidal coordination. An important issue
in the chemistry of these unstable molecules is the strength of the second
bond formed by the equatorial oxygens relative to the bonds formed by the
axial oxygens. This will also affect the relative pKa of hydroxyl groups in
these positions, hence this quantity can be used as a probe of bond strength.
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Unfortunately, the lifetime of phosphoranes is too short for standard pKa de-
termination. Estimates can only made by indirect methods, such as structure
reactivity relations (for more details see Ref. [42]). Independent verification
by computational methods can therefore be of considerable help.
The calculation followed the same scheme as applied in the reference study

of auto-dissociation of water[37]. In two separate series of calculations an
equatorial and axial hydroxyl group of P (OH5) were deprotonated using
the coordination number constraint method[42]. This resulted in two free
energy profiles Δw (nH) which were transformed to PMF’s for OH distance as
described in Sect. 15.3.6 and then used to compute the dissociation constant
α (Rc) as a function of Rc according to (15.21). Substituting in (15.22) leads
to Rc dependent pKa curves similar to Fig. 15.4. The final estimate of pKa
is obtained by reading off the value at Rc = 1.22Å, the bonding radius fitted
to the experimental pKw (see Fig. 15.4). The result is a value of 9.8 for
equatorial dissociation compared to 14.2 for axial dissociation, which is in
good agreement with the experimental estimates of 8.6 respectively 13.5(for
the experiment see also Ref. [42]).
These numbers are encouraging, in fact better than expected in view of

the many uncertainties involved. Apart from the density functional that is
employed, the main source of error is indeed the limited system size. By
treating the bonding radius Rc as an “empirical” parameter adjusting it to
the experimental ionization product of water, we have made this fundamental
reaction effectively into a reference for the computation of pK’s of weak acids.
The explanation for the apparent success of this approach in periodic cells as
small as used in ab initio MD, is not that long range effects are unimportant,
but that they are very similar for the acid dissocations considered. Evidently,
what distinguishes these reactions is the short range process of breaking the
OH bond and the subsequent formation of an O− − H3O+ contact ion pair.
This simple justification of our rather pragmatic approach leaves a number

of open questions. To mention just one: Treated as a single (highly correlated)
solution, the acid solute and its periodic images reach concentrations in the
order of 2M. In this regime activity coefficients can deviate from unity by
factors two or more. How to account for these effects is not clear. Further test
and analysis must bring answers to these and other questions. The example
of pKa calculation, however, shows that the use of reference systems is a valid
option to compensate for small system size in ab initio methods.

15.4 Linear Scaling Electronic Structure Methods
for ab initio Molecular Dynamics

Ab initio molecular dynamics simulations have made huge progress in recent
years. Recently, much work has been done to devise new algorithms that
reduce the scaling behavior and the ultimate goal, linear scaling has been
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achieved for most electronic structure methods. The review of Goedecker [43]
gives an overview of the different attempts.
Although most electronic structure methods are now available in a form

that allows for linear scaling algorithms there are still huge differences in
performance. Combining the electronic structure methods with molecular
dynamics is on a regular basis only possible for the independent particle
methods. Of those the Kohn–Sham method of density functional theory pro-
vides the highest accuracy and widest applicability. In the following sections
we will discuss methods and algorithms that allow for an optimal implemen-
tation of linear scaling techniques with the Kohn–Sham method.
The Kohn–Sham energy is defined as

EKS = Ekin[{Φ}] + Eext[n] + EH[n] + EXC[n] , (15.26)

where the kinetic energy Ekin is a function of the Kohn–Sham orbitals {Φ}
and the external energy Eext, Hartree energy EH, and exchange and correla-
tion energy EXC are functions of the electron density n. The election density
is calculated from the orbitals

n(r) =
∑

i

fi|Φi(r)|2 , (15.27)

and the occupation numbers fi. Using the variational principle and imposing
the orthogonality constraint on the orbitals leads to the Kohn–Sham equa-
tions (in canonical form)

HKSΦi = εiΦi . (15.28)

As the Kohn–Sham Hamiltonian HKS depends on the orbitals, these equa-
tions have to be solved iteratively until self–consistence is achieved.
Expanding the orbitals in a basis set transforms the equation into al-

gebraic form and we are left with the tasks to calculate the Kohn–Sham
Hamiltonian in its matrix representation from a given set of orbitals and the
search for the eigenvalues and eigenfunctions of this matrix. In the following
sections we will discuss methods and algorithms to efficiently perform these
two tasks.

15.4.1 Kohn–Sham Matrix Calculation

To be able to calculate the Kohn–Sham matrix in a number of steps propor-
tional to the system size, first it is necessary to find a matrix representation
with only O(N) non–vanishing elements. This can be achieved by using a ba-
sis set with finite support. There are two basis sets of this type used in linear
scaling calculations. Basis sets connected with grids in real space include finite
difference methods [44], finite element type methods based on B-splines [45]
and plane wave derived basis sets [46]. Another possibility is to use basis sets
derived from atomic orbitals. These basis sets are used in quantum chemistry
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calculations and are very popular with linear scaling approaches [47,48]. The
matrix elements to be calculated are

Hμν = 〈μ| − 12∇
2|ν〉+ 〈μ|Vext(r)|ν〉+ 〈μ|Vxc(r)|ν〉+ 12

∑

αβ

Pαβ〈μν||αβ〉 ,

(15.29)
where Vext is the external potential and Vxc the exchange and correlation
potential. Coulomb integrals are defined by

〈μν||αβ〉 =
∫ ∫
ϕμ(r)ϕν(r)ϕα(r′)ϕβ(r′)

|r− r′| dr dr′ . (15.30)

There are N4 integrals of this type, but using screening techniques [49] the
asymptotic number of non–vanishing integrals for large systems is N2. To
further reduce the scaling of this part of the calculation, adaptations of fast
multipole methods to charge distributions have been developed. [50]
Another approach expands the charge distribution into an auxiliary ba-

sis [51]
n(r) =

∑

αβ

Pαβϕα(r)ϕβ(r) =
∑

k

dkχk(r) . (15.31)

This reduces the inherent scaling for the Coulomb integrals to N3, which
can be again lowered to N2 using integral screening. The advantage is that
for small and medium system sizes, where the screening is not yet efficient,
considerable speed up can be achieved compared to the original method. [52]
A plane wave expansion of the electronic density can be viewed as a special

auxiliary basis set. Plane waves have the advantage of being orthogonal and
the expansion coefficients do not depend on the metric used. Further do
plane waves describe the Hartree potential derived from the density exactly
in the same basis and the calculation of the potential only needs O(N) steps.
The major disadvantage is the number of plane waves needed to accurately
describe the density. This effectively limits its use to methods where the
strongly varying parts of the electron density are either handled by pseudo
potentials or taken care of in other ways.
Another advantage of a plane wave expansion is that the long range part

of the external potential can be treated together with the other Coulombic
terms, greatly reducing the pre factor of the calculation of those matrix ele-
ments. In the following the derivation of the electrostatic energy in a suitable
form for the treatment with plane waves is outlined.
The electrostatic energy of a system of nuclear charges ZI at positions RI

and an electronic charge distribution n(r) consists of three parts: the Hartree
energy of the electrons, the interaction energy of the electrons with the nuclei
and the internuclear interactions

EES =
1
2

∫ ∫

dr dr′
n(r)n(r′)
|r− r′| +

∑

I

∫

drV I
core(r)n(r) +

1
2

∑

I �=J

ZIZJ

|RI −RJ | .

(15.32)
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The Ewald method can be used to avoid singularities in the individual terms
when the system size is infinite. In order to achieve this a Gaussian core
charge distribution associated with each nuclei is defined

nI
c(r) = −

ZI

(Rc
I)

3π
−3/2 exp

[

−
(
r−RI

Rc
I

)2
]

. (15.33)

At this point we redefine the core potential to be the potential of the Gaussian
charge distribution of Eq. (15.33)

V I
core(r) =

∫

dr′
nI

c(r
′)

|r− r′| = −
ZI

|r−RI |erf
[ |r−RI |

Rc
I

]

, (15.34)

where erf is the error function. This definition is convenient for the further
development of the electrostatic energy and leaves an effective external poten-
tial that only has short range terms. The interaction energy of this Gaussian
charge distributions is added and subtracted from the total electrostatic en-
ergy. This allows to combine terms to the electrostatic energy of a total charge
distribution ntot(r) = n(r) + nc(r), where nc(r) =

∑
I n

I
c(r). The remaining

terms are rewritten as a double sum over nuclei and a sum over self–energy
terms of the Gaussian charge distributions

EES =
1
2

∫ ∫

dr dr′
ntot(r)ntot(r′)

|r− r′|

+
1
2

∑

I �=J

ZIZJ

|RI −RJ |erfc
⎡

⎣ |RI −RJ |√
Rc

I
2 +Rc

J
2

⎤

⎦−
∑

I

1√
2π
Z2

I

Rc
I

, (15.35)

where erfc denotes the complementary error function.
For a periodically repeated system the total energy per unit cell (volume

V) is derived from the above expression by using the solution to Poisson’s
equation in Fourier space for the first term and make use of the quick con-
vergence of the second term in real space. The total charge is expanded in
plane waves with expansion coefficients

ntot(G) = n(G)− 1
V

∑

I

ZI√
4π
exp
[

−1
2
G2Rc

I
2
]

eiG·RI . (15.36)

This leads to the electrostatic energy for a periodic system

EES = 2πV
∑

G�=0

|ntot(G)|2
G2 + Eovrl − Eself , (15.37)

where

Eovrl =
∑′

I,J

∑

L

ZIZJ

|RI −RJ − L|erfc
⎡

⎣ |RI −RJ − L|√
Rc

I
2 +Rc

J
2

⎤

⎦ (15.38)
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and

Eself =
∑

I

1√
2π
Z2

I

Rc
I

. (15.39)

Here, the sums expand over all atoms in the simulation cell, all direct lattice
vectors L, and the prime in the first sum indicates that I < J is imposed
for L = 0. The electrostatic potential needed in the calculation of the Kohn–
Sham matrix is easily calculated in the plane wave basis

VH(r) = 4πV
∑

G�=0

ntot(G)
G2 eiG·r . (15.40)

Efficient screening can be applied to the calculation of the matrix elements
of this potential in real space [47].
The Gaussian–Augmented Plane Wave Method (GAPW) method [53,54]

uses a linear combination of atomic orbital expansion of the Kohn–Sham
orbitals

Φi(r) =
∑

α

cαiϕα(r). (15.41)

However, instead of using the straightforward definition of the electron den-
sity, another representation used in the projector–augmented wave (PAW)
method [55] is employed

n(r) = ñ(r)− ñ1(r) + n1(r), (15.42)

where ñ is smooth and distributed over all space, and

n1(r) =
∑

A

n1
A(r−RA) (15.43)

ñ1(r) =
∑

A

ñ1
A(r−RA) (15.44)

are sums of atom–centered contributions. The individual densities are con-
structed such that n1

A and ñ
1
A cancel outside a spherical radius of atom A

and inside this radius ñ is equal to the atom–centered contribution ñ1
A. Based

on this rewriting of the electron density the method used by Blöchl for the
PAW method can be applied to redefine Hartree and exchange and correla-
tion energies as sums of independent contributions from the smooth density
ñ and the atom–centered charge distributions.
The conditions on the different parts of the density are not strictly im-

posed but only approximately using projector methods. [55] Products of func-
tions from a second basis {g}, derived from the original basis {ϕ} are used
to expand the atom–centered densities. The relation of the two basis sets is
governed by matrices DA

aμ and D̃
A
aμ, where a denotes a function ga at atom

A and μ any function ϕμ from the original basis. Details on how to construct
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the basis functions {g} and the matrices D are given in Refs. [53,54]. Finally,
the smooth density is represented by an auxiliary basis set of plane waves

ñ(r) =
1
V

∑

|G|<Gc

ñ(G)eiG·r , (15.45)

where V is the volume of the periodic computational box. The plane wave
expansion is limited to functions with a kinetic energy smaller than a cut-
off value Ec = 1/2Gc

2. With this one can write the final definition of the
electronic density in the GAPW formulation

n(r) =
1
V

∑

|G|<Gc

ñ(G)eiG·r −
∑

A

∑

ab∈A

∑

μν

D̃A
aμPμνD̃

A
bμga(r)gb(r)

+
∑

A

∑

ab∈A

∑

μν

DA
aμPμνD

A
bμga(r)gb(r) , (15.46)

where all quantities are either analytic functions of the basis set {ϕ} or the
density matrix P . The matrices DA are sparse, as only few basis function
close to atom A have a non–vanishing contribution. Therefore the one–center
terms of the density can be calculated in a number of operations that does
not depend on system size, making the total calculation of all atom–centered
densities linear scaling. The plane wave expansion of the smooth density is
calculated in real space where an efficient screening can be applied due to the
locality of the basis functions. [47,53] A fast Fourier transform is finally used
to calculated ñ(G), making the total calculation of the density a N logN
method (N being the system size).
The Kohn–Sham matrix derived from the GAPW energy functional can

be calculated from several different contributions.

1. Integrals involving two basis functions and a local operator (e.g. kinetic
energy or screened external potential). These integrals can be calculated
analytically, provided that a basis of Gaussians is used. Linear scaling is
easily achieved by screening of integrals. A small pre factor in the scaling
law is ensured by the short range of all operators.

2. Contributions from the exchange and correlation functional of the atom–
centered densities. These integrals are calculated using numerical quadra-
ture. The number of integrals of this type is proportional to the number of
atoms and therefore linear in system size.

3. Integrals involving the Hartree and exchange and correlation potential de-
rived from the smooth density ñ. These potentials are available in the
plane wave basis. In its real space representation efficient screening can be
applied for these integrals [47,53] and linear scaling can be achieved.

The accuracy of the GAPWmethod has been tested on many systems [53,54].
The scaling behavior for the construction of the Kohn–Sham matrix is shown
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Table 15.2. Timings in seconds for the construction of the Kohn–Sham matrix
for zeolite systems and linear alkane chains. Number of atoms Natom, number of
electrons Nelec, number of basis functions Nbas, calculations performed on a IBM
397 workstation.

System Natom Nelec Nbas CPU time
Si24O48 72 384 936 110
Si48O96 144 768 1872 226
Si72O144 216 1152 2808 346
Si96O192 288 1536 3744 466
Si120O240 360 1920 4680 611
C60H122 182 482 1084 176
C80H162 242 682 1444 243
C100H202 302 802 1804 302

for different systems in Table 15.2. As expected one finds for a three dimen-
sional periodic system (zeolite) as well as for linear alkane chains an almost
linear scaling of the CPU time for the construction of the Kohn–Sham matrix.

15.4.2 Wavefunction Optimization;
Solving the Kohn–Sham Equations

Once the Kohn–Sham matrix has been calculated the task left to do is to
solve the Kohn–Sham equations. These equations for a fixed potential are
equivalent to other independent particle models like the Hartree–Fock or
tight–binding Hamiltonians. The equations can be summarized by

HC = CE , (15.47)

where H is the Hamiltonian matrix in an orthogonal basis, E the Lagrange
multiplier matrix andC the orbital coefficients. This is an eigenvalue problem
that scales with the third power of the system size. Many approaches have
been devised to reduce the pre factor of the scaling law for solving (15.47). For
example the Car–Parrinello method [1] can be used to solve (15.47) with a
scaling of N2

occNbas, where Nocc is the number of occupied orbitals and Nbas
the number of basis functions. If the number of occupied orbitals is much
smaller than the number of basis functions, e.g. in plane wave calculations,
this results in a dramatic decrease of the pre factor compared to a direct diag-
onalization scheme. Similar improvements can be achieved by other iterative
diagonalization methods.
However, for systems with more than about 100 atoms, solving the Kohn–

Sham equations even with the best diagonalization method becomes the bot-
tleneck of the electronic structure calculation. It was therefore important to
develop new methods that allow to find solutions to (15.47) with scaling laws
better than cubic. In the last ten years several such methods have been pro-
posed (see Ref [43] for a review). Some methods make use of the invariance
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of the energy functional to unitary transformations of the occupied orbitals
by searching for a special set of localized orbitals. Other methods avoid the
orbital picture all together and directly search for the density matrix. One set
of linear scaling methods is based on the observation that the density matrix
is a functional of the Kohn–Sham Hamiltonian

P = f(H) . (15.48)

The matrix function f is then approximated either by a Chebychev polyno-
mial [56] or a rational function approximation based on a Cauchy integral [57].
Another approach was put forward by Li et al. [58]. They define an extended
energy functional

Ω = Tr(3P 2 − 2P 3)(H − μI) . (15.49)

The density matrix is obtained by minimizing (15.49) with respect to P .
This method is variational and no constraint has to be imposed. The first
part of the functional ensures the idem-potency of the density matrix and
the chemical potential μ has to be adjusted such that the total number of
electrons is correct. This method has recently been combined with the Car–
Parrinello algorithm [59]. O(N) algorithms alone do not yield linear scaling.
However, in large molecules we can take advantage of matrix sparsity, i.e.,
the fact that many elements of a matrix are zero or below a certain threshold.
For large systems, where the number of significant elements scales linearly
with the size of the system, the cost of all sparse matrix operations will scale
linearly.
The sparsity of the density matrix, depends on several factors. We can

write the density matrix as,

Pij =
∑

kl

S−1
ik QklS

−1
lj , (15.50)

Qkl =
∫ ∫

drdr′ ϕk(r)P (r, r′)ϕl(r′) , Sij =
∫

dr ϕi(r)ϕj(r) ,

where P (r, r′) denotes the one-particle density operator and Qkl is its matrix
representation with respect to the atomic basis functions. From (15.50) it is
clear that the sparsity of P depends on the decay properties of P (r, r′) as
well as on the sparsity of S−1.
Theoretical models of periodic solids suggest that the locality of P (r, r′)

is related to the band gap Δε. For the case of an insulator, the one-particle
density operator decays asymptotically as an exponential [60]

P (r, r′) ≈ exp
(
−
√
Δε|r − r′|

)
. (15.51)

While the decay behavior of P (r, r′) is a fundamental property of the respec-
tive quantum mechanical system, this is certainly not true for the sparsity of
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S−1. The determining quantities are kind and size of the basis set chosen for
the calculation. In the following we will concentrate on Gaussian-type basis
functions, since they are almost exclusively used in ab-initio quantum chem-
istry. Extended basis sets are often needed in DFT calculations to achieve
converged results. These extended basis sets, expecially if they include dif-
fuse functions may often lead to near linear dependencies. Procedures used
to eliminate the dependencies can not be applied in the linear scaling con-
text as they destroy the local character of the basis. For a more systematic
treatment of the consequences of extended basis sets, it is useful to consider
the following definition. A well conditioned overlap matrix is one contain-
ing no linear or near linear dependencies. Its condition number, the ratio of
its largest and smallest eigenvalue, is small. Using this definition, it can be
shown [61], that a localized and well conditioned overlap matrix leads to a
similarly localized inverse and finally via (15.50) to a localized density ma-
trix. Unfortunately the reverse conclusion is also true, ill conditioned overlap
matrices caused by large nonorthogonal basis sets destroy the sparsity of the
density matrix. Since this is the crucial point determining whether a O(N)
method is faster than traditional electronic structure calculations, linear scal-
ing methods are not used when large nonorthogonal basis sets are required.
Standard methods used in quantum chemistry to deal with ill conditioned
overlap matrices are not applicable in linear scaling calculations. These algo-
rithms rely on the eigenfunctions of the overlap matrix which are non local.
However, in the context of their energy renormalization group method, Baer
and Head-Gordon [62] have devised an algorithm that produces a localized
basis with given condition number.
In the following we will present another method that constructs a well

conditioned basis on the fly. To achieve this a small fraction of the flexibility
of the basis set is lost.
Recently, Lee and Head-Gordon introduced the polarized atomic orbital

method [63,64] to construct small basis sets optimized in the molecular en-
vironment. A flexible PAO basis set with a dimension typically equal to the
size of a minimal basis, is formed from atom-centered linear combinations
of a larger set of atomic orbitals. While atom-optimized minimal basis sets,
e.g. of the STO-nG type, are often performing poorly in practical calcula-
tions, the PAO’s derive their flexibility from the fact that they can adapt to
the molecular environment by the admixture of higher angular momentum
functions. From a computational point of view, PAO’s have the attractive
feature of greatly reducing the number of independent variables to be deter-
mined during a density update. This offers the possibility for studying large
systems currently intractable with larger than minimal basis sets, while re-
taining a considerable amount of flexibility in the basis set. Besides, being
considerably less memory and CPU intensive, the PAO method is also useful
in combination with linear scaling density update methods. As seen in the
last section a major drawback of linear scaling approaches are numerical in-
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stabilities resulting from ill-conditioned overlap matrices encountered when
large nonorthogonal basis sets are used. PAO’s provides a solution to this
problem at the cost of a slight reduction of the flexibility of the basis set.
One finds that the condition number of the PAO overlap matrix is almost
independent from the condition number of the underlying extended basis set
and consequently no numerical instabilities are encountered (see Table 15.3).

Table 15.3. Logarithm of the condition number of the overlap matrix for different
basis sets computed from full SCF and PAO-SCF calculations.

Basis MIN DZ DZSP TZDP
10-glycine SCF 2.83 9.39 9.60 10.87

PAO-SCF — 2.08 2.15 2.12
(H2O)30 SCF 2.26 6.18 6.63 9.01

PAO-SCF — 1.70 1.87 1.85
C60 SCF 3.37 13.25 13.40 14.56

PAO-SCF — 2.49 2.49 2.41
C19H28O2 SCF 3.24 10.58 10.90 12.71

PAO-SCF — 2.38 2.46 2.48

PAOs are variationally optimized during an iterative SCF calculation.
They are defined as a linear transformation of an underlying extended basis
set. The transformation is strictly limited to atom-centered linear combina-
tions of basis functions. In other words, only basis functions from the same
atom are allowed to mix,

ϕ̃i(r) =
∑

j

Bjiϕj(r) , (15.52)

where i and j belong to the same atom. Here, ϕ denotes an atomic orbital
basis functions, B is the transformation from the extended to the PAO basis
set and the tilde is used to distinguish quantities related to the PAO basis
set. B is a strictly atom-centered block diagonal matrix. Using (15.52), it is
straightforward to compute the one-particle density matrix in the extended
basis as a function of the PAO density matrix and the transformation matrix
B,

P = BP̃BT . (15.53)

In the following we describe a scheme that builds on existing methods for
solving the Hartree–Fock or Kohn–Sham equations for the determination of
the PAO orbitals.
We split the optimization process into two parts. Optimization of the

transformation matrix is, at each step, accompanied by an optimization of
the density matrix (DM) in the current PAO basis. The calculation of the
density matrix is performed in the PAO basis and can be done either by
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Fig. 15.5. O-O pair correlation function of 32 water molecules obtained from PAO-
MD (PAO) compared to a MD simulation using the same program from ref. [54]
(Quickstep) and to a Car-Parrinello MD from ref. [67] (CPMD).

conventional methods (e.g. diagonalization) or linear scaling methods men-
tioned in previous sections. Thus, this scheme allows for great flexibility and
requires only minor changes in existing implementations. During the MO/DM
update we transform both the MO’s/DM and the Hamiltonian matrix into
an orthonormal basis. The transformation matrix is updated by minimizing
a constraint energy functional using a conjugate gradient scheme.
The density matrix in the PAO basis is calculated by minimizing the energy
functional Ω given in matrix representation

Ω = Tr[P̃BTHB] + Tr[Λ̃(P̃ − P̃BTSBP̃ )] , (15.54)

where Λ̃ is the Lagrangian multiplier matrix corresponding to the idem-
potency constraint.
Given a transformation matrix B, the next step is to compute a varia-

tional density matrix, either from converged MO’s or by solving directly for
the PAO density matrix without any explicit construction of orbitals. If we
transform the Hamiltonian matrix and the overlap matrix into the PAO ba-
sis, H̃ = BTHB and S̃ = BTSB, Eq. (15.54) can be rewritten and we have
to minimize,

Ω = Tr[P̃ H̃] + Tr[Λ̃(P̃ − P̃ S̃P̃ )] , (15.55)
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which leads to a generalized eigenvalue problem, H̃C̃ = S̃C̃Λ̃ or can be solved
directly for the PAO density matrix using linear scaling methods. However,
both procedures are only in the minimal basis.
In the optimization cycle for the PAO basis the derivative of Ω, as de-

fined in (15.54), with respect to the degrees of freedom of B are needed.
A convenient way to parameterize B is through a exponential function of a
skew–Hermitian matrix [65], where only the matrix elements connecting the
PAO and the excluded subspace are non zero.
Using the results above we have now a scheme to solve for the PAO’s by

iterating the following steps:

1. Choose an initial guess for B.
2. Compute the Hamiltonian matrix and the overlap matrix in the minimal
basis,
H̃ = BTHB and S̃ = BTSB.

3. Determine a variational density matrix, i.e. ∂Ω
∂P̃
= 0, by minimizing (15.55)

by either one of the following methods

(a) Solve H̃C̃ = S̃C̃Λ̃ and compute P̃ = C̃C̃T .
(b) Use a linear scaling density update method.

4. Calculate the gradient, ∂Ω
∂B , and update B, by e.g. a conjugate gradient

method.
5. If convergence is achieved compute the density matrix in the extended
basis,
P = BP̃BT , otherwise continue with step 2.

The scheme described above contains the solution of a Roothaan-type
equation in step 3. However, this has to be done only in the PAO basis,
reducing the work considerably both in a diagonalization based method as
also in linear scaling methods.
Figure 15.6 shows the results from test calculations on linear alkane chains

using diagonalization and different linear scaling algorithms together with the
PAO approach. For large enough system sizes the linear scaling approaches
are better performing than the diagonalization. However, break even points
for the different methods are at rather large system sizes. This is due to
the fact that the diagonalization scheme profits even more from the PAO
method than the linear scaling methods. Namely, the pre factor is reduced
by the third power of the ratio of the extended to the PAO basis set size.
The algorithms described can also be used to calculate forces which then

allow to perform molecular dynamics simulations with linear scaling methods.
These algorithmic improvements, together with the continuing development
of faster computer hardware, makes it possible to extend molecular dynamics
simulations to larger systems and longer time scales.
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Fig. 15.6. CPU time requirements [s] of a density matrix update step for the lin-
ear alkane chains C30H62, C60H122 and C90H182 using diagonalization (D), Cheby-
chev polynomial expansion (CPE) [56], canonical purification of the density matrix
(CP) [66] and conjugate gradient density matrix search (DMS) [58]. All density
update procedures are in terms of the PAO minimal basis.
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442 Ursula Röthlisberger, Michiel Sprik, and Jürg Hutter

31. K. E. Laasonen and M. L. Klein, J. Phys. Chem. A, 101, 98, (1997).
32. E. J. Meijer and M. Sprik, J. Am. Chem. Soc., 120, 6345, (1998).
33. K. Doclo and U. Roethlisberger, J. Phys. Chem. A, 104, 6464, (2000).
34. P. Carloni, M. Sprik, and W. Andreoni, J. Phys. Chem. B, 104, 823, (2000).
35. D. Aktah and I. Frank, J. Am. Chem. Soc., (2002) (in press).
36. B. L. Trout and M. Parrinello, Chem. Phys. Lett., 288, 343, (1998); J. Phys.

Chem. B, 103, 7340, (1999).
37. M. Sprik, Chem. Phys., 258, 139, (2000).
38. P. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Science,

291, 2121, (2001).
39. E. Schwegler, G. Galli, F. Gygi, and R. Q. Hood, Phys. Rev. Lett., 87, 265501,

(2001).
40. D. Chandler, “Introduction to Modern Statistical Mechanics”, Oxford Univer-

sity Press, 1987.
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16.1 Introduction

Since it is difficult to simulate the quantum dynamics of large, complex many-
body systems, one is led to construct a statistical mechanical description of
matter based on a mixture of quantum and classical dynamics. Many phys-
ically interesting systems may be partitioned into subsystems where certain
degrees of freedom must necessarily be treated quantum mechanically, while
others behave classically to a high degree of accuracy. Examples of systems
with these characteristics are familiar and include proton and electron trans-
fer processes and systems with electronic degrees of freedom coupled to heavy
nuclei. In these cases it is useful to construct a quantum-classical dynamics
that not only accounts for the quantum and classical dynamics of the two iso-
lated subsystems but also describes their interaction. [1,2,3] The most widely
used approaches are based on surface-hopping schemes where the coupling
between the two subsystems induces quantum transitions. [4,5,6,7]
The primary interest is in the computation of quantities such as expecta-

tion values of dynamical variables or transport coefficients usually determined
from integrals of time correlation functions. Consequently it is not sufficient
to simply focus on the development of quantum-classical dynamics; instead
one must formulate the statistical mechanics of such systems in order to
provide a route to the computation of these observables. In this chapter we
develop a scheme for carrying out quantum-classical evolution of many-body
systems and, having established the nature of this dynamics, formulate a sta-
tistical mechanics for such systems and devise schemes for the computation
of expectation values in this quantum-classical world.
We begin the presentation with a brief overview of quantum statistical

mechanics in Sect. 16.2 where the response function and autocorrelation func-
tion expressions for transport properties are given. This section also intro-
duces the partial Wigner representation and formulates quantum statisti-
cal mechanics in this form. The passage to quantum-classical dynamics is
considered in Sect. 16.3 and the forms of the quantum-classical Liouville
equation for the density matrix and dynamical variables are presented. Since
quantum-classical dynamics has some unusual features, its nature is discussed
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in Sect. 16.4. The evolution equation for the density matrix is expressed in
an adiabatic basis and the evolution of the density matrix is determined
in terms of an ensemble of surface-hopping trajectories. Section 16.5 carries
out an analogous analysis for the evolution of a dynamical variable. The
quantum-classical form of the canonical equilibrium density matrix is the
topic of Sect. 16.6. A knowledge of this quantity is necessary for the compu-
tation of equilibrium statistical mechanical properties. Nonequilibrium sta-
tistical mechanics in the quantum-classical world is formulated in Sect. 16.7.
This section gives the expressions for quantum-classical transport properties
and time correlation functions. Properties of the correlation functions are dis-
cussed and comparisons with full quantum mechanics are made. Section 16.8
gives an example of the calculation of the expectation value of an observ-
able for a many-body system: the spin-boson model. The conclusions of the
chapter are given in Sect. 16.9.

16.2 Quantum Dynamics and Statistical Mechanics

The time evolution of the quantum mechanical density matrix ρ̂ is given by
the von Neumann equation,

∂ρ̂(t)
∂t

= − i
h̄
[Ĥ, ρ̂(t)] , (16.1)

where Ĥ is the hamiltonian of the system. Its formal solution is

ρ̂(t) = e−iL̂tρ̂(0) = e−iĤt/h̄ρ̂(0)eiĤt/h̄ , (16.2)

with iL̂ = (i/h̄)[Ĥ, ] the quantum Liouville operator. In the Heisenberg
picture of quantum mechanics, the time evolution of a dynamical variable B̂
is given by

dB̂(t)
dt

=
i

h̄
[Ĥ, B̂(t)] , (16.3)

whose formal solution is

B̂(t) = eiL̂tB̂ = eiĤt/h̄B̂e−iĤt/h̄ . (16.4)

Usually, one is not simply interested in the time evolution of such quanti-
ties but rather in statistical mechanical quantities like the average values of
observables, dynamical properties or transport coefficients defined in terms
of time integrals of correlation functions. The average value of a dynamical
variable is given by

B(t) = TrB̂ρ̂(t) = TrB̂(t)ρ̂(0) , (16.5)

where we have used the fact that the time dependence can be transferred
from the density matrix to the operator using cyclic permutations under the
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trace. Thus, as is well known, one may either evolve a given initial density
matrix backward in time and compute the average of B̂ using the time evolved
density matrix to find B(t) or evolve the operator forward in time and average
over the initial value of the density matrix.
In quantum mechanical systems in thermal equilibrium, we are often in-

terested in the calculation of transport properties such as diffusion coefficients
or rate constants. The microscopic forms for such transport coefficients can
be obtained by applying linear response theory to a system in equilibrium
subjected to an external force or by monitoring the decay of fluctuations
about the equilibrium state. In linear response theory, it is assumed that
a time dependent external force F (t) couples to an operator Â†. Then the
system hamiltonian takes the form

Ĥ(t) = Ĥ − Â†F (t) , (16.6)

and the evolution equation for the density matrix reads

∂ρ̂(t)
∂t

= (ih̄)−1[Ĥ(t), ρ̂(t)] ,

= −(iL̂− iL̂AF (t))ρ̂(t) , (16.7)

where iL̂A ≡ (i/h̄)[Â†, ]. The adjoint of Â is denoted by Â†.
Assuming the system was in thermal equilibrium in the distant past, the

solution of this equation to linear order in the external force is [8]

ρ̂(t) = ρ̂Qe +
∫ t

−∞
dt′ e−iL̂(t−t′)iL̂Aρ̂

Q
e F (t

′) . (16.8)

Here ρ̂Qe = Z
−1
Q exp(−βĤ) is the canonical equilibrium density matrix and

ZQ = Tr exp(−βĤ) is the partition function. The response of the system to
the external force may be determined by computing the average value of an
operator B̂ using the density matrix at time t,

B(t) = TrB̂ρ̂(t) =
∫ t

−∞
dt′ TrB̂e−iL̂(t−t′)iL̂Aρ̂

Q
e F (t

′)

=
i

h̄

∫ t

−∞
dt′ TrB̂(t− t′)[Â†, ρ̂Qe ]F (t′)

=
i

h̄

∫ t

−∞
dt′ Tr[B̂(t− t′), Â†]ρ̂Qe F (t′) ≡

∫ t

−∞
dt′ φBA(t− t′)F (t′) . (16.9)

For simplicity, the operator B̂ was assumed to have zero average value in
equilibrium. The last line in (16.9) defines the response function

φBA(t) = 〈 i
h̄
[B̂(t), Â†]〉Q , (16.10)
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where the angle brackets denote a quantum canonical equilibrium average,
〈· · · 〉Q = Tr · · · ρ̂Qe .
The response function may be written in a equivalent form by using the

quantum mechanical operator identity, [8]

i

h̄
[Â†, ρ̂Qe ] =

∫ β

0
dλ ρ̂Qe

˙̂ †
A(−ih̄λ) , (16.11)

in the second line of (16.9) to obtain

φBA(t) =
∫ β

0
dλ Tr

˙̂ †
A(−ih̄λ)B̂(t)ρ̂Qe . (16.12)

If we choose B̂ = ˙̂
A ≡ f̂A, the flux corresponding to the operator Â,

the response has the form of a macroscopic law and the response function is
proportional to the flux autocorrelation function

φȦA(t) = 〈
i

h̄
[f̂A(t), Â†]〉Q =

∫ β

0
dλ Trf̂†A(−ih̄λ)f̂A(t)ρ̂Qe ≡ β〈f̂†A; f̂A(t)〉Q .

(16.13)
The last equality defines the Kubo transformed correlation function. A simple
transport property λA in quantum mechanics is proportional to the time
integral of the flux autocorrelation function,

λA ∝
∫ ∞

0
dt 〈 i
h̄
[f̂A(t), Â†]〉Q ∝

∫ ∞

0
dt 〈f̂A; f̂A(t)〉Q . (16.14)

The quantum mechanical correlation functions satisfy time translation
symmetry,

〈f̂A; f̂A(t)〉Q = 〈f̂A(τ); f̂A(t+ τ)〉Q , (16.15)

as can be verified by using the explicit form of the canonical equilibrium
density matrix and cyclic permutations under the trace.

16.2.1 Mixed Representation of Quantum Statistical Mechanics

To obtain an alternative description of the quantum statistical mechanics of
the system, we partition it into two subsystems: the first subsystem contains
n particles with masses m and coordinate operators q̂; the second subsystem
comprises N particles with masses M and coordinate operators Q̂.
The hamiltonian operator may be written as

Ĥ =
P̂ 2

2M
+
p̂2

2m
+ V̂ (q̂, Q̂) , (16.16)

where p̂ and P̂ are momentum operators and V̂ (q̂, Q̂) is the total potential
energy. We employ a condensed notation such that q̂ = (q̂1, q̂2, . . . q̂3n) and
Q̂ = (Q̂1, Q̂2, . . . Q̂3N ), with an analogous notation for p̂ and P̂ .
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The alternative description we wish to consider is based on a partial
Wigner transformation [9] of the density matrix with respect to the subset
of Q coordinates, [10]

ρ̂W (R,P ) = (2πh̄)−3N

∫

dzeiP ·z/h̄〈R− z
2
|ρ̂|R+ z

2
〉 . (16.17)

In this representation the quantum Liouville equation is,

∂ρ̂W (R,P, t)
∂t

= − i
h̄

(
(Ĥρ̂)W − (ρ̂Ĥ)W

)

= − i
h̄

(
ĤW e

h̄Λ/2iρ̂W (t)− ρ̂W (t)eh̄Λ/2iĤW

)
, (16.18)

where the partially Wigner transformed Hamiltonian is

ĤW (R,P ) =
P 2

2M
+
p̂2

2m
+ V̂W (q̂, R) , (16.19)

and Λ is the negative of the Poisson bracket operator,

Λ =
←
∇P ·

→
∇R −

←
∇R ·

→
∇P . (16.20)

The direction of an arrow indicates the direction in which the operator acts.
To obtain this equation we used the definition of the partial Wigner transform
of an observable,

ÂW (R,P ) =
∫

dze−iP ·z/h̄〈R+ z
2
|Â|R− z

2
〉 , (16.21)

and the fact that the partial Wigner transform of a product of operators is
[11]

(ÂB̂)W (R,P ) = ÂW (R,P )eh̄Λ/2iB̂W (R,P ) . (16.22)

We may rewrite the quantum Liouville equation in a more compact form [12]

∂ρ̂W (R,P, t)
∂t

= − i
h̄

( →
HΛρ̂W (t)− ρ̂W (t)

←
HΛ

)

,

≡ −iL̂W ρ̂W (t) ≡ −(HW , ρ̂W (t))Q . (16.23)

by defining the quantum Liouville operator and quantum Lie bracket. In these

equations we have defined the right (
→
HΛ) and left (

←
HΛ) acting operators,

→
HΛ = ĤW (R,P )eh̄Λ/2i ,

←
HΛ = eh̄Λ/2iĤW (R,P ) . (16.24)
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The second equality in (16.23) defines the quantum Liouville operator
iL̂W in the partial Wigner representation while the third defines the associ-
ated Lie bracket (HW , )Q. More generally the Lie bracket of two partially
Wigner transformed operators is defined as

(ÂW , B̂W )Q =
i

h̄

( →
AΛB̂W − B̂W

←
AΛ

)

=
i

h̄

(
ÂW e

h̄Λ/2iB̂W − B̂W e
h̄Λ/2iÂW

)
. (16.25)

Here the
→
AΛ and

←
AΛ operators are defined as in (16.24) with the replacement

ĤW → ÂW .
The formal solution of (16.23) is

ρ̂W (R,P, t) = e−i
→

HΛt/h̄ρ̂W (R,P, 0)ei
←

HΛt/h̄ ,

= e−iL̂W tρ̂W (R,P, 0) . (16.26)

A similar set of equations may be written for the evolution of any quantum
operator Â. In the Wigner representation these equations and their solutions,
respectively, take the form,

dÂW (R,P, t)
dt

= iL̂W ÂW (R,P, t) = (HW (R,P ), ÂW (R,P, t))Q , (16.27)

and

ÂW (R,P, t) = eiL̂W tÂW (R,P ) = ei
→

HΛt/h̄ÂW (R,P )e−i
←

HΛt/h̄ . (16.28)

We shall drop the dependence of quantities like ÂW (R,P ) on the bath phase
space coordinates when confusion is unlikely to arise. However, we stress
that the time dependence of the observables cannot be expressed as, e.g.,
ÂW (R(t), P (t))
We now consider some important properties of products of partially

Wigner transformed operators. The Wigner transform of a product of op-
erators satisfies the associative product rule,

(ÂB̂Ĉ)W =
((
ÂW e

h̄Λ/2iB̂W

)
eh̄Λ/2iĈW

)

=
(
ÂW e

h̄Λ/2i
(
B̂W e

h̄Λ/2iĈW

))
, (16.29)

which may be generalized to products of n operators.
Next, consider a quantum operator Ĉ = ÂB̂ which is the product of two

operators. Since the time evolution of Ĉ may be written as Ĉ(t) = Â(t)B̂(t),
its partial Wigner transform is

ĈW (t) = ÂW (t)eh̄Λ/2iB̂W (t) . (16.30)
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The quantum mechanical Lie bracket, either in its original form as
(i/h̄)[Â, B̂] or in its partially Wigner transformed form (ÂW , B̂W )Q, satisfies
the Jacobi identity,

(ÂW , (B̂W , ĈW )Q)Q + (ĈW , (ÂW , B̂W )Q)Q + (B̂W , (ĈW , ÂW )Q)Q = 0,

(16.31)

so that it has the Lie algebraic structure of any true dynamics, quantum or
classical.
This general formulation of quantum dynamics reduces to standard de-

scriptions in certain limiting cases. If the Q subsystem is absent, the system
comprises only q degrees of freedom and we recover the usual quantum dy-
namical description in terms of the von Neumann equation (16.1). If one
considers the Q dynamics alone without any q subsystem, one has the ordi-
nary Wigner representation of quantum mechanics and all partially Wigner
transformed operators become simple phase space functions: ÂW (R,P ) →
AW (R,P ). The classical limit of the quantum Q dynamics, which consists in
keeping only terms of order h̄0 in the evolution operator, is obtained by trun-
cating the power series expression of the exponential operator: exp(h̄Λ/2i) =
1 + h̄Λ/2i. In this limit the bracket (HW , )Q reduces to the Poisson bracket
{HW , }, and the Wigner representation of the quantum Liouville equation
becomes the classical Liouville equation, ∂ρC/∂t = {HW , ρC} = −iLCρC(t),
whose solution may be written as,

ρC(R,P, t) = e−iLCtρC(R,P, 0) = ρC(R(−t), P (−t), 0) . (16.32)

Having given this brief overview of quantum statistical mechanics, we
turn to the central problem of this chapter: the construction of the analogs
of these results for quantum-classical systems.

16.3 Quantum-Classical World

As discussed above, we consider a quantum mechanical system partitioned
into two subsystems. Now, however, the second subsystem, comprising N
particles with massesM and coordinate operators Q̂, is taken to represent an
environment or bath withM � m. We wish to study the limit where the bath
degrees of freedom may be treated classically but the quantum character of
the first subsystem (hereafter referred to as the quantum subsystem) cannot
be neglected. The approximation to the full quantum dynamics we want to
consider is depicted schematically in Fig. 16.1.
The passage to quantum-classical dynamics is made by first scaling dis-

tances in terms of the wavelength appropriate for the mass m particles,
λm = (h̄2/mε0)1/2, where ε0 is a suitable energy unit, scaling the mo-
menta of the light and heavy particles by pm = (mλm/t0) = (mε0)1/2
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q,m

Q,M

q,m

(R,P),M

^

^

^

Fig. 16.1. Schematic representation of a quantum system partitioned into two sub-
systems and its approximation as a quantum subsystem in a classical bath.

and PM = (Mε0)1/2, respectively, and time by t0 = h̄/ε0. [10] The evolu-
tion operator in the quantum Liouville equation may then be expanded in
μ = (m/M)1/2 and retaining terms to first order in this quantity we find (in
the original unscaled variables), [10]

∂ρ̂W (R,P, t)
∂t

= − i
h̄
[ĤW , ρ̂W (t)] +

1
2

({
ĤW , ρ̂W (t)

}
−
{
ρ̂W (t), ĤW

})

= − i
h̄

( →
HΛρ̂W (t)− ρ̂W (t)

←
HΛ

)

≡ −iL̂ρ̂W (t) ≡ −(ĤW , ρ̂W (t)) , (16.33)

where we have defined the right and left acting operators, respectively, as

→
HΛ = ĤW

(

1 +
h̄Λ

2i

)

,
←
HΛ =

(

1 +
h̄Λ

2i

)

ĤW , (16.34)

the quantum-classical Liouville operator L̂ and the quantum-classical bracket
as

(ÂW , B̂W ) =
i

h̄

( →
AΛB̂W − B̂W

←
AΛ

)

, (16.35)

where
→
AΛ is defined as

→
HΛ in (16.34) with ĤW → ÂW . Equation (16.33) is

the quantum-classical Liouville equation [10,13,14,15,16,17,18,19,20] whose
solution will be discussed later in this chapter. The quantum-classical Liou-
ville equation describes the coupled evolution of these two subsystems. We
shall see that as a result of this coupling a purely Newtonian description of
the bath dynamics is no longer possible. The quantum-classical equation of
motion for a dynamical variable B̂W can be written in a similar form as

dB̂W (t)
dt

= (ĤW , B̂W (t)) . (16.36)
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The formal solutions of (16.33) and (16.36) are [12]

ρ̂W (t) = e−iL̂tρ̂W (0) = S
(
e−i

→
HΛtρ̂W (0)ei

←
HΛt
)
, (16.37)

and

B̂W (t) = eiL̂tB̂W = S
(

ei
→
HΛt/h̄B̂W e

−i
←
HΛt/h̄

)

, (16.38)

where the operator S is needed to prescribe how the left and right acting op-
erators are to be evaluated to yield the evolution determined by the quantum-
classical Liouville operator. The presence of the S operator signals the exis-
tence of differences in the formal structures of quantum-classical and quan-
tum dynamics. Quantum-classical dynamics does not possess a Lie algebraic
structure like quantum mechanics since the properties in (16.29), (16.30) and
(16.31) are violated to some order in h̄. In particular, the Jacobi identity
[18,12]

(ÂW , (B̂W , ĈW )) + (ĈW , (ÂW , B̂W )) + (B̂W , (ĈW , ÂW )) = O(h̄), (16.39)

is valid only to terms O(h̄).

16.4 Nature of Quantum-Classical Dynamics

In order to gain insight into the nature of quantum-classical dynamics, in this
section we show how the evolution of the density matrix can be expressed
in terms of an ensemble of trajectories. Equation (16.33) is independent of
the basis used to represent the quantum subsystem, and any convenient basis
may be chosen to study the evolution. Here, however, we use an adiabatic
basis since it provides a fruitful way to analyze the dynamics and carry out
simulations. As we shall see below, we are forced to adopt an Eulerian descrip-
tion of the density matrix evolution since the evolution operator cannot be
reduced to a streaming operator acting on the “classical” (R,P ) coordinates.
At each coordinate point R of the classical bath we define the Hamiltonian

ĥW (R) =
p̂2

2m
+ V̂W (q̂, R) , (16.40)

whose eigenvalue problem

ĥW (R)|α;R〉 = Eα(R)|α;R〉 , (16.41)

yields the adiabatic states and energies. In this adiabatic basis the density ma-
trix has matrix elements ραα′

W (R,P, t) = 〈α;R|ρ̂W (R,P, t)|α′;R〉. The density
matrix may be written as a vector function with components ρsW by associ-
ating an index s = αN + α′ with the pair (αα′), where 0 ≤ α, α′ < N for an
N -state quantum subsystem.
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Using this notation and introducing a subscript to label different values
of s, e.g. sk = αkN + α′k, the quantum-classical Liouville equation has the
form [21,22,23]

∂ρ
sj

W (R,P, t)
∂t

=
∑

sk

−iLsjsk
ρsk

W (R,P, t) . (16.42)

After some algebra, the matrix elements of the quantum-classical Liouville
operator are found to be [10,21]

− iLsjsk
= −(iωsj

+ iLsj
)δsjsk

+ Jsjsk

≡ −iL0
sjsk

+ Jsjsk
. (16.43)

The diagonal term iL0
sjsk

= iL0
sj
δsjsk

= (iωsj + iLsj )δsjsk
contains the fre-

quency ωsj
(R) = (Eαj

(R) − Eα′
j
(R))/h̄ and the classical Liouville operator

Lsj

iLsj
=
P

M
· ∂
∂R

+
1
2

(
F

αj

W + F
α′

j

W

)
· ∂
∂P
, (16.44)

where Fαj

W = −〈αj ;R|∂V̂W (r̂,R)
∂R |αj ;R〉 = −∂Eαj

(R)/∂R is the Hellmann-
Feynman force that governs the motion on the adiabatic surface correspond-
ing to the state |αj ;R〉 of the q̂ subsystem. The term Jsjsk

is responsible for
non-adiabatic transitions and has the form [10]

Jsjsk
= − P
M
· dαjαk

(

1 +
1
2
Sαjαk

· ∂
∂P

)

δα′
jα′

k

− P
M
· d∗α′

jα′
k

(

1 +
1
2
S∗α′

jα′
k
· ∂
∂P

)

δαjαk
, (16.45)

where Sαjαk
= (Eαj

−Eαk
)dαjαk

( P
M ·dαjαk

)−1 and dαjαk
= 〈αj ;R| ∂

∂R |αk;R〉
is the non-adiabatic coupling matrix element which determines the non-
adiabaticity of the system. Henceforth, we choose a real-valued adiabatic
basis so that dαα = 0 and Jsjsk

is off-diagonal. Moreover, when the first term
on the right hand side of (16.45) is non-zero, the second term is zero, and
vice versa. Specifically, the first term is non-zero for values of sj and sk such
that sj − sk = ±%N , while the second term is non-zero only if sj − sk = ±%,
where 1 ≤ % < N . These two conditions restrict the sequences of transitions
that can occur. [23]
We can solve the equation for the density matrix formally to give

ρ
sj

W (R,P, t) =
∑

sk

(
e−iLt

)
sj ,sk

ρsk
0 (R,P ) , (16.46)

where ρsk
0 (R,P ) ≡ ρsk

W (R,P, 0). Using the form of the Liouville operator
iLsj ,sk

in (16.43), we may use the Dyson identity to write the evolution
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operator as

(
e−iLt

)
sj ,sk

= e−iL0
sj

t
δsjsk

+
∑

sl

∫ t

0
dt′e−iL0

sj
(t−t′)

Jsjsl

(
e−iLt′)

sl,sk

.

(16.47)
Equation (16.47) may be substituted into (16.46) and iterated to yield

ρs0
W (R,P, t) = e

−iL0
s0

tρs0
0 (R,P ) +

∞∑

n=1

∑

s1...sn

∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn

×
n∏

k=1

[
e
−iL0

sk−1
(tk−1−tk)

Jsk−1sk

]
e−iL0

sn
tnρsn

0 (R,P ) , (16.48)

where t0 ≡ t. In this representation of the dynamics, the evolution op-
erator exp(−iL0

sj
t) determines the evolution between the quantum tran-

sitions governed by Jsjsk
. For a diagonal contribution with sj ∼ (αjαj),

exp(−iL0
sj
t) = exp(−iLαj

t) is the ordinary classical evolution operator gov-
erned by the potential Eαj

(R),

e−iLsj
tfsj
(R,P ) = fsj

(Rt
0,sj
, P t

0,sj
) , (16.49)

where fsj
(R,P ) is a function of the phase space point (R,P ). Here

(Rt
0,sj
, P t

0,sj
) is the result of backward evolution to time zero of the phase

point (R,P ) at time t. For an off-diagonal contribution with sj ∼ (αjα
′
j), the

phase factor comes into play and in Ref. [10] we have shown that

e−(iωsj
+iLsj

)tfsj (R,P ) = e
−i

∫ t
0 dτωsj

(Rτ
0,sj

,P τ
0,sj

)
e−iLsj

tfsj (R,P )

≡ Wsj
(t, 0)fsj

(Rt
0,sj
, P t

0,sj
) . (16.50)

In this case the classical evolution is determined by the mean potential
(Eαj

(R)− Eα′
j
(R))/2 of the two coherently coupled adiabatic states.

Figure 16.2 shows one of the trajectory segments contributing to the sec-
ond order term in the density matrix. In this figure we are interested in the
value of the (αα) component of the density matrix at phase point (R,P ) at
time t. The phase point (R,P ) is evolved backward in time on the Eα po-
tential energy surface until time t′′ where a quantum transition to adiabatic
state β occurs. At this time the operator Jαα,αβ acts, for example, to change
the state of the second index of the density matrix, (αα) → (αβ); a corre-
sponding continuous change occurs in the bath momentum determined by the
momentum derivative in the J operator. States α and β are now coherently
coupled. The phase point evolves backward in time on the mean of the Eα

and Eβ potential energy surfaces between time t′′ where the quantum tran-
sition occurred and time t′ where another quantum transition takes place.
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P

R

t 0t’t

αβ

’’

(R,P)

(R’,P’)
αα ββ

Fig. 16.2. Schematic picture of a trajectory that enters into the computation of
the density matrix.

During this time interval the phase factor (using an obvious generalization
of the definition in (16.50))

Wαβ(t′, t′′) = e
−i

∫ t′
t′′ dτ ωαβ(Rτ

t′′,αβ
) , (16.51)

accumulates its value reflecting the coherent evolution of the off-diagonal
element of the density matrix. At time t′ a second quantum transition, e.g.,
(αβ) → (ββ), occurs. As before the operator Jαβ,ββ determines the nature
of this transition and specifies the momentum change in the bath. Due to
this second quantum transition the system is once again in a diagonal state
(ββ). As a result of this transition back to the diagonal state, no phase factor
enters the evolution to time zero on the single adiabatic surface Eβ to yield
the phase point (R′, P ′).
The density matrix element at time t can be constructed from an en-

semble of such “surface-hopping” trajectories where all possible numbers of
quantum transitions to all possible intermediate quantum states at all possi-
ble intermediate times are considered. This ensemble of trajectories provides
an exact solution of the density matrix in the quantum-classical limit.
In order to illustrate the nature of this ensemble we consider a simple

example where a two-level quantum subsystem is coupled to a single classical
one-dimensional harmonic oscillator. [21,22] Since the classical phase space
is two dimensional, we may easily visualize the classical trajectories that
contribute to the density matrix evaluation. The hamiltonian ĥW (R) can be
written in terms of the quantum subsystem hamiltonian (ĥs) plus the bath
(Vb) and coupling (V̂c) potentials as ĥW (R) = ĥs+Vb(R)+V̂c(q̂, R), with ĥs =
p̂2/2m+ V̂s. The eigenvalue problem for ĥs is ĥs|i〉 = ε̃i|i〉, where the space is
spanned by the two eigenstates |1〉 and |2〉. We take the matrix elements of
the coupling potential in this basis to be 〈i|V̂c(q̂, R)|j〉 = h̄γ(R)(1−δij) where
we have assumed that Vii = 0. In terms of the diabatic or spin up and spin
down states, | ↑>= 2−1/2(|1〉+ |2〉) and | ↓>= 2−1/2(|1〉 − |2〉), respectively,
and taking the energy constant at zero, the hamiltoniam matrix of ĥW (R) is
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hW = −h̄Ωσ̂x + Vb(R)I+ h̄γ(R)σ̂z , (16.52)

where 2h̄Ω = ε̃2 − ε̃1, I is the unit matrix and the Pauli matrices are

σ̂x =
(
0 1
1 0

)

, σ̂z =
(
1 0
0 −1

)

. (16.53)

The solution of the eigenvalue problem for hW yields the adiabatic energies
and eigenstates. The adiabatic energies are

E1,2(R) = Vb(R)∓ h̄(Ω2 + γ(R)2)1/2 . (16.54)

The adiabatic eigenstates are

|1;R〉 = (2(1 +G2)
)−1/2

((1 +G)| ↑〉+ (1−G)| ↓〉) ,

|2;R〉 = (2(1 +G2)
)−1/2

((G− 1)| ↑〉+ (1 +G)| ↓〉) , (16.55)

with G(R) = (γ(R))−1(−Ω + (Ω2 + γ(R)2)1/2). The non-adiabatic coupling
matrix element is d12 = −d21 = −(1 +G2)−1G′.
An example of the ensemble of trajectories, with up to four non-adiabatic

transitions, contributing to the 11 element of the density matrix at phase
point (R,P ) at a specific time t = 4.4 is shown in Fig. 16.3 for this system.
[21] In this figure the three solid curves represent deterministic classical evo-
lution on the three potential energy surfaces that enter into the description
of the dynamics: the ground state adiabatic surface, E1(R), (outermost curve

Fig. 16.3. The ensemble of trajectories containing up to four non-adiabatic tran-
sitions contributing to the 11-element of the density matrix at phase point (−1, 1)
at time t.



458 Raymond Kapral and Giovanni Ciccotti

labeled 11), the excited state adiabatic surface, E2(R), (innermost curve la-
beled 22) and the mean of these two surfaces, (E1(R) + E2(R))/2 = Vb(R),
which is the same as the bare bath potential energy for this model system
with two quantum states (middle curve labeled 12). All members of the en-
semble start at phase point (−1, 1) at time t indicated by a heavy dot. As
an illustration of how the features of the trajectories can be understood,
consider, for example, those trajectories that involve a single non-adiabatic
transition between times t and 0. If the non-adiabatic transition 1→ 2 takes
place at t = 0+, the system will evolve on the ground adiabatic state (out-
ermost curve) for entire trajectory ending at the heavy dot on the E1(R)
surface. If the non-adiabatic transition takes place at t = t+, the system will
evolve on the bath potential (middle curve) for its entire history ending at
the heavy dot on the Vb(R) curve. If the transition occurs at any time inter-
mediate between these two limits, (t = 4.4 and t = 0), the trajectory will end
at a point on an arc that lies at the end of the high density region between
the 12 and 11 curves and connects the two heavy dots on these curves. For
these trajectories it is ρ120 (Rt,12, Pt,12) (and a similar quantity with (1↔ 2))
that determines the ρ11W (R,P, t). A similar analysis can be carried out for
trajectories with a larger number of non-adiabatic transitions.

16.5 Time Evolution of Dynamical Variables

In most statistical mechanical applications one is not interested in the evo-
lution of a particular element of the density matrix at a particular phase
point but, rather, in expectations of dynamical variables or time correla-
tion functions. It is therefore often more useful to consider the evolution of
a dynamical variable instead of the density matrix. Although the methods
used to carry out this evolution are similar to those for the density matrix,
it is convenient to show how the quantum-classical evolution equation for a
dynamical variable can be analyzed.
The equation of motion for the dynamical variable was given in (16.36)

and its formal solution, which was given in (16.38) can be written more
explicitly as

B
sj

W (R,P, t) =
∑

sk

(
eiLt
)
sjsk
Bsk

0 (R,P ) , (16.56)

where Bsj

W (R,P, 0) = B
sj

0 (R,P ). Using the form of the Liouville operator
iLsjsk

in (16.43), we may use a variant of the identity in (16.47) to write the
evolution operator as

(
eiLt
)
sjsk

= eiL
0
sj

t
δsjsk

−
∑

sl

∫ t

0
dt′eiL

0
sj

t′
Jsjsl

(
eiL(t−t′)

)

slsk

. (16.57)

Substitution of this expression into (16.36), followed by iteration of the re-
sulting equation and the change of variables τ1 = t1 and τi = ti + τi−1,
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(i > 1), yields the result,

Bs0
W (R,P, t) = e

L0
s0

tBs0
0 (R,P ) +

∞∑

n=1

(−1)n
∑

s1...sn

∫ t

0
dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn

×
n∏

k=1

[
e
iL0

sk−1
(τk−τk−1)Jsk−1sk

]
eiL

0
sn

(t−τn)Bsn
0 (R,P ) . (16.58)

The forward-evolved classical trajectory segments are defined in a manner
that parallels the earlier discussion for the backward-evolved trajectories.
We let

(R̄sj ,t, P̄sj ,t) = e
iLsj

t(R,P ) , (16.59)

be the trajectory that starts at (R,P ) at time 0 and ends at (R̄sj ,t, P̄sj ,t) at

time t. The action of the evolution operator eiL
0
sj

t on any phase function is

e
iL0

sj
t
fsj
(R,P ) = ei

∫ t
0 dτωsj

(R̄sj,τ )eiLsj
tfsj
(R,P )

≡ Wsj (t, 0)fsj (R̄sj ,t, P̄sj ,t) . (16.60)

We may write the form of the dynamical variable at time t more explicitly
by using the forms of the phase points evolved under quantum-classical dy-
namics. In (16.45) we saw that J could be written as the sum of two contribu-
tions that determine which of the two indices in sj changes in a non-adiabatic
transition. We use a symbol κ = 0, 1 to denote these two contributions and
label the S and d factors with the same symbol. While the dynamics may be
carried out using the explicit expression for J as discussed in the previous
section, in many instances it is sufficient to write J in the momentum-jump
approximation [10]. To present the evolution results in their simplest form,
we utilize this approximation in the remainder of this section.
The momentum-jump approximation to J may be constructed in the

following way. The operator J involves differential operators of the form(
1 + 1

2Sαβ · ∂
∂P

)
acting on functions of the classical phase space coordinates.

It is possible to write this operator approximately as a “momentum jump”
operator whose effect on the momentum is to shift it by some value. In or-
der to carry out this calculation one must account for the fact that Sαβ

depends on the momenta. In spite of this dependence, one may introduce a
translation operator in a new variable to complete the demonstration. Since
Sαβ = ΔEαβ d̂αβ( P

M · d̂αβ)−1, with ΔEαβ = Eα − Eβ , we may write
(

1 +
1
2
Sαβ · ∂

∂P

)

= 1 +
1
2
ΔEαβM

1

(P · d̂αβ)

∂

∂(P · d̂αβ)

= 1 +ΔEαβM
∂

∂(P · d̂αβ)2
(16.61)
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If we now consider the action of the operator on any function f(P ) of the
momentum, we have
(

1 +ΔEαβM
∂

∂(P · d̂αβ)2

)

f(P ) ≈ eΔEαβM∂/∂(P ·d̂αβ)2f(P )

= eΔEαβM∂/∂(P ·d̂αβ)2f
(
d̂⊥αβ(P · d̂⊥αβ) + d̂αβsgn(P · d̂αβ)

√

(P · d̂αβ)2
)

= f
(
d̂⊥αβ(P · d̂⊥αβ) + d̂αβsgn(P · d̂αβ)

√

(P · d̂αβ)2 +ΔEαβM
)
. (16.62)

In the second line of this equation we have written the momentum vector
as a sum of its components along d̂αβ and perpendicular to d̂⊥αβ , and in the
last line we have used the fact that the exponential operator is a translation
operator in the variable (P · d̂αβ)2. If the energy difference times the mass
ΔEαβM is small, we may expand the square root in the argument of f to
obtain,

f
(
d̂⊥αβ(P · d̂⊥αβ) + d̂αβsgn(P · d̂αβ)

√

(P · d̂αβ)2 +ΔEαβM
)

≈ f
(
d̂⊥αβ(P · d̂⊥αβ) + d̂αβ(P · d̂αβ) +

1
2
(P · d̂αβ)−1ΔEαβM

)

= f
(
P +

1
2
Sαβ

)
. (16.63)

Collecting these results we may write,
(

1 +
1
2
Sαβ · ∂

∂P

)

f(P ) ≈ eΔEαβM∂/∂(P ·d̂αβ)2f(P ) = f(P +
1
2
Sαβ) . (16.64)

Thus, to lowest order in the small parameter ΔEαβM we may write the
operators in J as momentum translation (jump) operators.
This approximation may yield useful results beyond its strict domain of

validity. Non-adiabatic transitions are likely to occur when adiabatic poten-
tial energy surfaces lie close in energy so that ΔEαβ is small. In such circum-
stances the non-adiabatic coupling matrix element dαβ is typically large. The
momentum jump approximation will be valid in such cases provided P · dαβ

is not too small. If ΔEαβ is large, i.e. when the approximation fails, the pref-
actor of (1 + 1

2Sαβ · ∂
∂P ), P · dαβ/M , is typically small and the contributions

to the evolution coming from the J factors carry a small weight.
If we then consider the evolution of a phase point using the first-order

momentum jump approximation, we can label the evolved phase point with
state and κ labels to specify its history. Using this notation, the sequence of
bath phase space coordinates at times τ1, τ2, . . . τn, supposing that one of the
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components of J acts at each of these times, is

(R̄s0,τ1 , P̄s0,τ1) = e
iLs0 (τ1)(R,P )

(R̄τ1,κ1
s1,τ2
, P̄ τ1,κ1

s1,τ2
) = eiLs1 (τ2−τ1)(R̄s0,τ1 , P̄s0,τ1 +

Sκ1
1

2
)

· · ·

(R̄{τi,κi}
si,τi+1

, P̄ {τi,κi}
si,τi+1

) = eiLsi
(τi+1−τi)(R̄{τi−1,κi−1}

si−1,τi
, P̄ {τi−1,κi−1}

si−1,τi
+
Sκi

i

2
) . (16.65)

Here {τi, κi} = ((τ1, κ1), (τ2, κ2), . . . , (τi, κi)) labels the history of the choice
of the two terms in J .
Using this form we may write the solution in terms of surface-hopping

trajectories as

Bs0
W (R,P, t) = Ws0(t, 0)B

s0
0 (R̄s0,t, P̄s0,t)

+
∞∑

n=1

(−1)n
∑

s1κ1,...,snκn

∫ t

0
dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn

×
n∏

k=1

[

Wsk−1(τk, τk−1)
P̄
{τk,κk}
sk−1,τk )
M

· dκk
sk−1→sk

(R̄{τk,κk}
sk−1,τk

)

]

×Wsn
(t, τn)Bsn

0 (R̄
{τn,κn}
sn−1,τn

, P̄ {τn,κn}
sn−1,τn

) . (16.66)

16.5.1 Equations for Canonical Variables

To gain some appreciation for the nature of quantum-classical evolution of
a dynamical variable, we consider the equations of motion for the “classi-
cal” canonical variables. Letting Bαα′

0 = Rδαα′ or Bαα′
0 = Pδαα′ , and using

(16.36) we find

dRαα′
W (t)
dt

=
∑

ββ′
iLαα′,ββ′Rββ′

W (t)=
∑

ββ′

(
eiLt
)
αα′,ββ′

P

M
δββ′≡ P

αα′
W (t)
M

(16.67)

dPαα′
W (t)
dt

=
∑

ββ′
iLαα′,ββ′P ββ′

W (t)=
∑

ββ′

(
eiLt
)
αα′,ββ′ F

β
W δββ′≡Fαα′

W (t) ,(16.68)

where we have used the fact that iLαα′,ββ′R = (P/M)δαβδα′β′ and iLαα′,ββ′P

= F β
W δαβδα′β′ . While the first equation for the time evolution of the position

has the same form as Newton’s equations of motion, the second equation of
motion for the momentum does not. The “force” Fαα′

W (t) cannot be expressed
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simply as function of Rαα′
W (t) as may be verified by repeated application of

iL to its initial value. Consequently, to evaluate the canonical variables one
must use the techniques described above for a general dynamical variable.

16.6 Quantum-Classical Equilibrium Density

The form of the canonical equilibrium density that appears in the quantum
mechanical expressions for transport coefficients is ρ̂Qe = Z

−1
Q exp(−βĤ) and

expressed in terms of the partial Wigner transform it can be written as

ρ̂QWe(R,P ) = (2πh̄)
−3N

∫

dzeiP ·z/h̄〈R− z
2
|ρ̂Qe |R+

z

2
〉 . (16.69)

The equilibrium density is stationary under full quantum dynamics, either
in its original or partial Wigner transformed forms. It is not stationary un-
der quantum-classical dynamics and in this section we discuss the quantum-
classical analog of this equilibrium density which satisfies, [12]

iL̂ρ̂We =
i

h̄
(
→
HΛρ̂We − ρ̂We

←
HΛ) = 0 . (16.70)

One way to find a solution of this equation is in terms of a power series
expansion in h̄. Letting

ρ̂We =
∞∑

n=0

h̄nρ̂
(n)
We , (16.71)

substituting this expression in (16.70) and grouping by powers of h̄, we obtain
the following recursion relations: for n = 0,

i
[
ĤW , ρ̂

(0)
We

]
= 0 , (16.72)

and for n ≥ 0,

i
[
ĤW , ρ̂

(n+1)
We

]
=
1
2

{
ĤW , ρ̂

(n)
We

}
− 1
2

{
ρ̂
(n)
We, ĤW

}
. (16.73)

If a similar set of recursion relations is written for the partial Wigner
transform of the full quantum mechanical canonical equilibrium density ma-
trix, one finds that the two set of recursion relations are identical to O(h̄).
Since the recursion relations permit us to obtain the terms higher order in
h̄ from those with lower orders, we have sufficient information to construct
the quantum-classical stationary density that is consistent with the quantum
mechanical equilibrium density to order h̄.
To compute the equilibrium density, it is convenient for our purposes to

consider these recursion relations in an adiabatic basis where they take the
form,

iEαα′ρ
(0)αα′

We = 0 , (16.74)
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iEαα′ρ
(n+1)αα′

We = −iLαα′ρ
(n)αα′

We +
∑

νν′
Jαα′,νν′ρ

(n)νν′

We . (16.75)

One may prove that these equations can be solved to any order in h̄ to obtain
the equilibrium density. While it is difficult to find the full solution to any
order in h̄, it is not difficult to find the solution analytically to order h̄. It is
given by [12]

ραα′
We = ρ

(0)α
We

(
δαα′ − i P

M
· dαα′

(β

2
(1 + e−βEα′α)

+
1
Eαα′

(1− e−βEα′α)
)
(1− δαα′)

)
+O(h̄2) . (16.76)

The utility of this expression for the equilibrium density matrix to O(h̄) for
the calculation of time correlation functions can be subjected to numerical
test.

16.7 Quantum-Classical Time Correlation Functions

We are now in a position to address the problem posed at the begining
of this chapter in Sect. 16.2: the nature of the quantum-classical forms for
equilibrium time correlation functions and their associated transport coeffi-
cients. The more general issue we address is the construction of a nonequi-
librium statistical mechanics in a world obeying quantum-classical dynamics.
To carry out this program we begin by constructing a linear response theory
for quantum-classical dynamics. [12] The formalism parallels that for quan-
tum (or classical) systems. We suppose the quantum-classical system with
hamiltonian ĤW is subjected to a time dependent external force that couples
to the observable ÂW , so that the total hamiltonian is

ĤW (t) = ĤW − Â†WF (t) . (16.77)

The evolution equation for the density matrix takes the form

∂ρ̂W (t)
∂t

= (ih̄)−1
(→
HΛ(t)ρ̂W (t)− ρ̂W (t)

←
HΛ(t)

)
,

= −(iL̂ − iL̂AF (t))ρ̂W (t) , (16.78)

where
→
HΛ(t) =

→
HΛ −

→
A†

ΛF (t) and iL̂A has a form analogous to iL̂ with Â†W
replacing ĤW , iL̂A = (Â

†
W , ). The formal solution of this equation is found

by integrating from t0 to t,

ρ̂W (t) = e−iL̂(t−t0)ρ̂W (t0)

+
∫ t

t0

dt′ e−iL̂(t−t′)iL̂Aρ̂W (t′)F (t′) . (16.79)
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In parallel with the derivation for quantum mechanical systems outlined
in Sect. 16.2, we choose ρ̂W (t0) to be the equilibrium density matrix, ρ̂We.
As discussed in Sect. 16.6, ρ̂We is defined to be invariant under quantum-
classical dynamics, iL̂ρ̂We = 0. In this case the first term on the right hand
side of (16.79) reduces to ρ̂We and is independent of t0. We may assume that
the system with hamiltonian ĤW is in thermal equilibrium at t0 = −∞, and
with this boundary condition, to first order in the external force, (16.79) is

ρ̂W (t) = ρ̂We +
∫ t

−∞
dt′ e−iL̂(t−t′)iL̂Aρ̂WeF (t′) . (16.80)

Then, computing BW (t) = Tr′
∫
dRdP B̂W ρ̂W (t) to obtain the response

function, we find

BW (t) =
∫ t

−∞
dt′ Tr′

∫

dRdP B̂W e
−iL̂(t−t′)iL̂Aρ̂WeF (t′)

=
∫ t

−∞
dt′ 〈(B̂W (t− t′), Â†W )〉F (t′) ≡

∫ t

−∞
dt′ φQC

BA(t− t′)F (t′) .

(16.81)

Thus, the quantum-classical form of the response function is

φQC
BA(t) = 〈(B̂W (t), Â

†
W )〉 . (16.82)

The derivation of linear response theory in the quantum-classical world is
completely analogous to that in quantum mechanics. The response function
in (16.82) is structurally similar to that in (16.10) with the quantum-classical
bracket replacing the quantum Lie bracket, (i/h̄)[ , ] → ( , ), the dynami-
cal variable B̂W (t) evolves under quantum-classical dynamics instead of full
quantum mechanics and the trace over the quantum canonical density ma-
trix is replaced by an average over ρ̂We. One may regard these replacements
as correspondence rule to transform a quantum response function to the
quantum-classical response function.
Knowing the response function, we may derive an expression for a trans-

port property by taking B̂W = ˙̂
AW = iLÂW ≡ f̂AW . The quantum-classical

analog of the expression for a quantum mechanical transport coefficient in
(16.14) is given by

λA ∝
∫ ∞

0
dt 〈(f̂AW (t), Â

†
W )〉 =

∫ ∞

0
dt Tr′

∫

dRdP f̂AW (t)(Â
†
W , ρ̂We) .

(16.83)
In writing the second line of (16.83) we have used cyclic permutations un-
der the trace and integrations by parts. In addition to this direct derivation
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via linear response theory, this form can also be obtained by applying the
correspondence rule to the first expression on the right hand side of (16.14).
At this point we have all the ingredients for the computation of trans-

port properties and expectation values of dynamical variables in a quantum-
classical world. The equilibrium time correlation function in (16.83) entails
evolution of f̂W (t) under quantum-classical classical dynamics as discussed
in Sect. 16.5, evaluation of the quantum-classical bracket of Â†W and ρ̂We,
and an integration over the classical phase space coordinates and trace over
the quantum states. In this formulation of quantum-classical nonequilibrium
statistical mechanics, correlation functions should be computed by ensemble
averages of dynamical quantities, as specified by (16.83), rather than by time
averages. In addition, we observe that while ρ̂We is not a probability den-
sity, ρ̂(0)W provides a weight function for sampling the phase space points and
quantum states for the evaluation of the average.
While this statistical mechanical formulation is complete it is worth re-

marking that some aspects of the quantum mechanical calculation do not
carry over to the quantum-classical world. These concern time translation
invariance and alternate forms for the time correlation function expressions
for transport coefficients.
The first issue we examine is time translation invariance of the equilib-

rium time correlation functions. Consider the quantum mechanical response
function in (16.10). This function may also be written as

φBA(t) = 〈 i
h̄
[B̂(t), Â†]〉Q = 〈 i

h̄
[B̂(t+ τ), Â†(τ)]〉Q , (16.84)

using the form of the canonical equilibrium density matrix and cyclic permu-
tations under the trace. This property is not exactly satisfied by the correla-
tion function in quantum-classical response function (16.82). To see this we
may write (16.82) more explicitly as

φQC
BA(t) = 〈(B̂W (t), Â

†
W )〉

=
i

h̄

(
〈B̂W (t) (1 + h̄Λ/2i) Â

†
W 〉 − 〈Â†W (1 + h̄Λ/2i) B̂W (t)〉

)
, (16.85)

Using cyclic permutations under the trace, integration by parts and the fact
that ρ̂We is invariant under quantum classical dynamics, one may show that

〈B̂W (t) (1 + h̄Λ/2i) Â
†
W 〉 = 〈eiLτ (B̂W (t) (1 + h̄Λ/2i) Â

†
W )〉 . (16.86)

However, the evolution of a composite operator in quantum-classical dynam-
ics cannot be written exactly in terms of the quantum-classical evolution of
its constituent operators, but only to terms O(h̄). To see this consider the
action of the quantum-classical Liouville operator on the composite operator
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ĈW = B̂W (1 + h̄Λ/2i)Â
†
W . We have

iL̂ĈW =
i

h̄

( →
HΛ

(

B̂W

(

1 +
h̄Λ

2i

)

Â†W

))

− i
h̄

((

B̂W

(

1 +
h̄Λ

2i

)

Â†W

) ←
HΛ

)

,

= (iL̂B̂W )
(

1 +
h̄Λ

2i

)

Â†W + B̂W

(

1 +
h̄Λ

2i

)

(iL̂Â†W ) +O(h̄) . (16.87)

It follows that

ĈW (τ) = eiL̂τ ĈW =
(
eiL̂τ B̂W

)(

1 +
h̄Λ

2i

)(
eiL̂τ Â†W

)
+O(h̄)

= B̂W (τ)
(

1 +
h̄Λ

2i

)

Â†W (τ) +O(h̄) . (16.88)

Therefore, the quantum-classical correlation function satisfies standard time
translation invariance only to O(h̄),

φQC
BA(t) = 〈(B̂W (t), Â

†
W )〉 = 〈(B̂W (t+ τ), Â

†
W (τ))〉+O(h̄) , (16.89)

although its most strict form, (16.86), is surely satisfied. Consequently, trans-
port properties should be computed using ensemble averages as in (16.83),
rather than through time averages assuming ergodicity.
Next, we consider alternate forms for correlations that are commonly

used in computations. We saw that the quantum mechanical response func-
tion (16.10) could be written in the equivalent form (16.12) using the Kubo
identity (16.11). However, the quantum-classical version of the Kubo identity
holds only to O(h̄), [12]

(Â†W , ρ̂We) =
∫ β

0
dλρ̂We(1 +

h̄Λ

2i
) ˙̂A†W (−ih̄λ) +O(h̄) . (16.90)

If we then write the quantum-classical transport coefficient (16.83) as

λA ∝
∫ ∞

0
dt Tr′

∫

dRdP f̂AW (t)(Â
†
W , ρ̂We) , (16.91)

and use (16.90), we find another expression for the transport coeficient in
Kubo transformed form,

λA ∝
∫ ∞

0
dt

∫ β

0
dλTr′

∫

dRdP

(

f̂†AW (−ih̄λ)(1 +
h̄Λ

2i
)f̂AW (t)

)

ρ̂We+O(h̄),
(16.92)
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Since the quantum-classical form of the Kubo identity is valid only to O(h̄),
the two forms of the autocorrelation function expressions for the transport
coefficient are no longer equivalent. The results of comparisons of compu-
tations of both forms of the correlation functions can provide information
about the reduction to the quantum-classical limit.

16.8 Simulation Schemes

In this section we give a few technical details concerning the implementation
of the development presented above needed to simulate quantum-classical
dynamics and evaluate expectation values and time correlation functions.
To simulate quantum-classical evolution one must evaluate the action

of the time evolution operator exp (iLt) on a dynamical variable. There are
many ways to do this. While we have stressed the use of an adiabatic basis, the
choice of basis is often determined by the physical application under consider-
ation. One may implement schemes that treat the operator J responsible for
non-adiabatic transitions and bath momentum changes either exactly [21,23]
or approximately by momentum jump approximations [10,21,22,23]. Finally,
a variety of schemes may be devised for the computation of the evolution
operator. [10,21,22,19,23,24,25]
To illustrate the application of the formalism and techniques described

here to a many-body system, we consider the calculation of the average value
of an observable B̂W at time t for the spin-boson system [23],

BW (t) =
∑

αα′

∫

dRdP Bαα′
W (t)ρα

′α
W (R,P, 0) , (16.93)

where ρ̂W (R,P, 0) is the initial value of the density matrix. We have expressed
the expectation value in an adiabatic basis. In order to compute such average
values, one must sample initial phase space points and quantum states from a
weight determined by ρα

′α
W (R,P, 0) and evolve Bαα′

W (t) according to quantum-
classical dynamics. We have already shown in (16.66) how to express the time
evolution of Bαα′

W (t) in terms of a sequence of surface-hopping trajectories.
Consequently, a solution for BW (t) in terms of surface-hopping trajectories
may be found using a hybrid Monte Carlo-Molecular Dynamics scheme that
combines a numerical implementation of (16.66) with sampling according to
ρα

′α
W (R,P, 0). [21,22,23]
In order to complete the calculation of the nth order term in (16.66) we

must carry out the sums over the discrete sk indices and perform the multiple
time integrals. Not all the sequences {s0, . . . , sn} contribute since only a
subset S of the sequences is physically permissible. The allowed sequences
have sk−sk+1 = ±%N or sk−sk+1 = ±% for 1 ≤ % < N . One can either count
all the elements of S contributing to (16.66) or estimate the sum through a
Monte Carlo sampling of the summand over S. [23]
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The time integrals that must be computed are of the type

I =
∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtnf(t1, t2, ..., tn), (16.94)

and simplest Monte Carlo method that can be used for their evaluation in-
volves uniform sampling. Alternatively, sampling based on least-discrepancy
sequences or other more sophisticated sampling schemes may be used. [23]

16.8.1 Spin–Boson Model

The spin-boson model is one of the most widely studied model systems be-
cause it provides a simple description of many physical phenomena and is
amenable to analysis. [26,27,28,29] It has served as testing ground for many
simulation methods [30,31] and it in this spirit which we study it here. The
spin-boson model describes a two-level system, with states {| ↑>, | ↓>}, bi-
linearly coupled to a harmonic bath of N oscillators with masses Mj and
frequencies ωj , and has hamiltonian

Ĥ = −h̄Ωσ̂x +
N∑

j=1

(
P̂ 2

j

2Mj
+
1
2
Mjωj

2R̂2
j − cjR̂j σ̂z

)

. (16.95)

The energy gap of the isolated two-state system is 2h̄Ω and σ̂x and σ̂z are
Pauli matrices. The coupling constants cj and frequencies ωj in this hamil-
tonian have been taken from Makri and Thompson [31],

cj =
√
ξh̄ω0Mjωj , ωj = −ωc ln

(

1− j ω0

ωc

)

, (16.96)

where ω0 = (ωc/N) (1− exp(−ωmax/ωc)). The spectral density is character-
ized by the Kondo parameter ξ and frequency ωc. The parameter ωmax is a
cut-off frequency. With this parameter choice we have a model of an infinite
bath with Ohmic spectral density in terms of a finite number of oscillators.
Taking the partial Wigner transform[9] over the bath degrees of freedom,

the hamiltonian becomes

ĤW = −h̄Ωσ̂x +
N∑

j=1

(
Pj

2

2Mj
+
1
2
Mjωj

2Rj
2 − cjRj σ̂z

)

,

=
N∑

j=1

Pj
2

2Mj
− h̄Ωσ̂x + Vb(R) + h̄γ(R)σ̂z . (16.97)

which depends on the classical phase space coordinates (R,P ) and the spin
degrees of freedom. The last three terms in the second line of (16.97) have
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the same form (16.52) with

Vb(R) =
N∑

j=1

1
2
Mjωj

2R̂2
j , (16.98)

and γ(R) = −∑N
j=1 cjRj . The adiabatic energies Eα(R), (α = 1, 2) and

corresponding eigenvectors have the same forms as (16.54) and (16.55).
The results will be presented in dimensionless variables,R′

j = (Mjωc/h̄)
1/2
Rj

and P ′
j = (h̄Mjωc)

−1/2
Pj , and we henceforth drop the primes on the vari-

ables and assume that these dimensionless variables are used.
We have assumed that the density matrix at t = 0 is uncorrelated so that

the subsystem is in state | ↑〉 and bath is in thermal equilibrium,

ρ̂(0) = ρ̂s(0)Z−1
b e

−βĤb , ρ̂s(0) =
(
1 0
0 0

)

, (16.99)

where Zb is the bath partition function. The partial Wigner transform of this
initial density operator is [9]

ρ̂W (R,P, 0) = ρ̂s(0)ρbW (R,P ), (16.100)

where

ρbW (R,P )=
N∏

i=1

tanh(βωi/2)
π

exp
[

−2 tanh(βωi/2)
ωi

(
P 2

i

2
+
ω2

iR
2
i

2

)]

.(16.101)

The time evolution of the difference in population between the ground
and excited states (expectation value of σ̂z)

σ̂z(t) = Tr′
∫

dRdP σ̂z(t)ρ̂W (R,P, 0) =
∑

αα′

∫

dRdP σαα′
z (t)ρα

′α
W (R,P, 0) ,

(16.102)
was computed for this ten-oscillator spin-boson model using the surface-
hopping scheme discussed in Sects. 16.4 and 16.5. The calculations were
carried out using both the exact form of the J operator as well as its repre-
sentation in terms of the momentum jump approximation. [23]
The results obtained using the quantum-classical surface-hopping scheme

[23] are compared below with the known numerically exact results [31] for this
model. Figure 16.4 (left panel) is a plot of σz(t) versus time computed using
the surface-hopping algorithm including up to four (n = 4) non-adiabatic
transitions along with the influence functional results for a Kondo parameter
of ξ = 0.007. One can see that for the time interval shown our results for
n = 4 are in complete accord with those of Makri and Thompson. [31]
It is instructive to examine the individual adiabatic and non-adiabatic

contributions to the surface-hopping solution as a function of time. These
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Fig. 16.4. Left panel: σz(t) versus time for ξ = 0.007. Influence functional results
(filled circle) (see text), surface-hopping results for n up to 4 (down triangle). Right
panel: Contributions to σz(t) versus time for ξ = 0.007. Individual contributions
are: adiabatic dynamics, n = 0, (square); non-adiabatic contributions, n = 1, (dia-
mond); n = 2, (up triangle); n = 3, (left triangle); n = 4, (right triangle).

results are shown in Fig. 16.4 (right panel). While the coupling to the bath is
quite weak and adiabatic dynamics dominates the structure for this value of
the Kondo parameter, the dynamics has non-negligible non-adiabatic com-
ponents. The convergence of the surface-hopping results may also be gauged
from an examination of this figure: the third and fourth order contribu-
tions are small over the entire time interval studied. Additional details of
the simulation method as well as results for stronger coupling may be found
in Ref. [23].

16.9 Conclusion

Quantum-classical dynamics leads to viable methods for studying many-
body systems where the quantum character of certain degrees of freedom
must be taken into account. In this chapter we have presented a formulation
of quantum-classical dynamics that accounts for the coupled evolution of
quantum and classical subsystems and have given a description of quantum-
classical dynamics in terms of an ensemble of “surface-hopping” trajectories.
In addition, the nonequilibrium statistical mechanics of such systems was
constructed and expressions for expectation values of dynamical variables
and transport properties were derived. The statistical mechanical formula-
tion provides formulas for time correlation functions and specifies how they
must be evaluated in simulations. Consequently, the results presented here
provide one with all the theoretical tools needed to evaluate observables in a
quantum-classical world. Further developments of the topics presented here
will likely center on extensions of the theory of quantum-classical dynamics,
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the construction of efficient simulation schemes for quantum-classical evolu-
tion and applications to realistic systems with physical interest.
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20. C. Schütte, preprint SC 99-10 (Konrad-Zuse-Zentrum, 1999).
21. S. Nielsen, R. Kapral and G. Ciccotti: J. Chem. Phys. 112, 6543 (2000).
22. S. Nielsen, R. Kapral and G. Ciccotti: J. Stat. Phys. 101, 225 (2000).
23. D. Mac Kernan, G. Ciccotti and R. Kapral: J. Chem. Phys. 106, (2002).
24. C. Wan and J. Schofield: J. Chem. Phys. 113, 7047 (2000).
25. M. Santer, U. Manthe, G. Stock: J.Chem. Phys. 114, 2001 (2001).
26. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and M.

Zwerger: Rev. Mod. Phys. 59, 1 (1987).
27. U. Weiss: Quantum Dissipative Systems (World Scientific, Singapore, 1999).
28. E. B. Davis: Quantum Theory of Open Systems (Academic, London, 1976).
29. T. Dittrich, P. Hänggi G.-L. Ingold, B. Kramer G. Schön and W. Zwerger:

Quantum Transport and Dissipation, (Wiley, New York, 1998).
30. D. E. Makarov and N. Makri: Chem. Phys. Lett. 221, 482 (1994); N. Makri

and D. E. Makarov: J. Chem. Phys. 102, 4600, 4611 (1995); N. Makri: J. Math.
Phys. 36, 2430 (1995); E. Sim and N. Makri: Comp. Phys. Commun. 99, 335
(1997): N. Makri: J. Phys. Chem. 102, 4414 (1998).

31. N. Makri and K. Thompson: Chem. Phys. Lett. 291, 101 (1998); K. Thompson
and N. Makri: J. Chem. Phys. 110, 1343 (1999); N. Makri: J. Phys. Chem. B
103, 2823 (1999).



17 The Coupled Electronic–Ionic
Monte Carlo Simulation Method

David Ceperley1,2, Mark Dewing3, and Carlo Pierleoni1,4

1 CECAM, c/o ENS Lyon, 46 Allée d’Italie, 69364 Lyon (France)
2 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West

Green Street, Urbana, Illinois 61801 (USA)
3 INTEL, Fox Drive, Champaign, IL
4 INFM and Department of Physics, University of L’Aquila, Via Vetoio, L’Aquila

(Italy)

Abstract. Quantum Monte Carlo (QMC) methods such as Variational Monte
Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accu-
rate and general methods for computing total electronic energies. We will review
methods we have developed to perform QMC for the electrons coupled to another
MC simulation for the ions. In this method, one estimates the Born-Oppenheimer
energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the
energy is used in a Metropolis simulation of the ionic degrees of freedom. Important
aspects of this method are how to deal with the noise, which QMC method and
which trial function to use, how to deal with generalized boundary conditions on
the wave function so as to reduce the finite size effects. We discuss some advantages
of the CEIMC method concerning how the quantum effects of the ionic degrees of
freedom can be included and how the boundary conditions can be integrated over.
Using these methods, we have performed simulations of liquid H2 and metallic H
on a parallel computer.

17.1 Introduction

The first computer simulations of a condensed matter system used the sim-
plest inter-atomic potential, the hard sphere interaction[1]. As computers
and simulation methods progressed, more sophisticated and realistic poten-
tials came into use, for example the Lennard–Jones potential to describe
rare gas systems, the potential functions being parameterized and then fit
to reproduce experimental quantities. Both Molecular Dynamics (MD) and
Monte Carlo (MC) methods can be used to generate ensemble averages of
many-particle systems, MC being simpler and only useful for equilibrium
properties.
Inter–atomic potentials originate from the microscopic structure of mat-

ter, described in terms of electrons, nuclei, and the Schrödinger equation.
But the many-body Schrödinger equation is too difficult to solve directly, so
approximations are needed. In practice, one usually makes the one electron
approximation, where a single electron interacts with the potential due to the

P. Nielaba, M. Mareschal, G. Ciccotti (Eds.): LNP 605, pp. 473–500, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



474 David Ceperley, Mark Dewing, and Carlo Pierleoni

nuclear charge and with the mean electric field generated by all the other elec-
trons. This is done by Hartree–Fock (HF) or with Density Functional Theory
(DFT)[2]. DFT is, in principle, exact, but contains an unknown exchange and
correlation functional that must be approximated, the most simplest being
the Local Density Approximation (LDA) but various improvements are also
used.
In 1985, Car and Parrinello introduced their method, which replaced an

assumed functional form for the potential with a LDA-DFT calculation done
“on the fly”[3]. They did a molecular dynamics simulation of the nuclei of
liquid silicon by computing the density functional forces of the electronic de-
grees of freedom at every MD step. It has been a very successful method, with
the original paper being cited thousands of times since its publication. There
are many applications and extensions of the Car–Parrinello method[4,5,6,7].
The review of applications to liquid state problems by Sprik[6] notes that
the LDA approximation is not sufficient for an accurate simulation of water
although there are improved functionals that are much more accurate.
Quantum Monte Carlo (QMC) methods have developed as another means

for accurately solving the many body Schrödinger equation[8,9,10,11]. The
success of QMC is to a large extend because electrons are directly represented
as particles, so that the electronic exchange and correlation effects can be
directly treated. Particularly within the LDA, DFT has known difficulties in
handling electron correlation[12].
In the spirit of the Car-Parrinello method, in this paper we describe initial

attempts to combine a Classical Monte Carlo simulation of the nuclei with
a QMC simulation for the electrons. This we call Coupled Electronic-Ionic
Monte Carlo (CEIMC)[13]. As an example of this new method we apply it to
warm dense many-body hydrogen. Hydrogen is the most abundant element
in the universe, making an understanding of its properties important, par-
ticularly for astrophysical applications. Models of the interiors of the giant
planets depends on a knowledge of the equation of state of hydrogen[14,15].
Hydrogen is also the simplest element, but it still displays remarkable vari-
ety in its properties and phase diagram. It has several solid phases at low
temperature, and the crystal structure of one of them (phase III) is not fully
known yet. At high temperature and pressure the fluid becomes metallic, but
the exact nature of the transition is not known, nor is the melting transition
from liquid to solid for pressures above 1MBar. The present knowledge of
the phase diagram of hydrogen is summarized in Fig. 17.1.
Some of the previous QMC calculations have been at high temperature

using the restricted Path Integral MC method. This method become com-
putationally inefficient at temperatures a factor of ten lower than the Fermi
temperature[16]. At the present time it is not known how to make the PIMC
method efficient at the low temperatures needed to calculate interesting por-
tions of the phase diagram. Zero temperature QMC methods have been used
for calculations in the ground state[17,18,19] with full quantum effects used
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I

II III

Fig. 17.1. Phase Diagram of hydrogen. Solid lines are experimental determination,
dashed line are theoretical estimates. The solid line labelled Jupiter is the set of
points (P,T) estimated to exist in the planet. The box shows roughly the domain
of applicability of PIMC.

for both the electronic and protonic degrees of freedom. In such cases it is
hard to ensure that the protonic degrees of freedom are fully converged be-
cause of the problem that the electron and protons require two different time
scales which differ by three orders of magnitude. In addition, finite temper-
ature effects of the protons are beyond the reach of the method. CEIMC
provides a middle way : the electrons are at zero temperature where accu-
rate trial functions are known and the zero variance principle applies, while
the protons (either classical or quantum) are at finite temperature and not
subjected to the limitations imposed by the electronic time scale.
The electrons are assumed to be in their ground state, both in the Car–

Parrinello method and in CEIMC. There are two internal effects that could
excite the electrons, namely coupling to nuclear motion and thermal exci-
tations. In the first case, we make the Born–Oppenheimer approximation,
where the nuclei are so much more massive than the electrons that the elec-
trons are assumed to respond to nuclear motion instantaneously, and so stay
in their ground state. We neglect any occupation of excited states of the elec-
trons due to coupling to nuclear motion. To estimate the effect of thermal
excitation in metallic hydrogen, consider a gas of degenerate electrons at a
density of n = 0.0298 electrons per cubic Bohr (i.e. rs = (4πn/3)

−1/3 = 2.0).
This has a Fermi temperature of about 140,000K. In the molecular hydrogen
phase, the gap between the ground state and the first excited state of a hy-
drogen molecule at the equilibrium bond distance is about 124,000K. Since
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our temperatures are well below this, and we are not at too high pressures
(since the pressure decreases the gap), the thermal occupation of excited
states can be neglected. At higher pressure however, when the electrons be-
comes delocalized and the system becomes metallic thermal effects can be
relevant.
This report brings up-to-date previous work on CEIMC described in ref.

[20]. The rest of this paper is as follows. First, we will describe the penalty
method to rigorously deal with the noisy QMC estimates of energy differences.
Then we will briefly discuss method for computing energy differences. Next,
the choice of trial wave function will be discussed. Finally, we put all the pieces
of a CEIMC simulation together and discuss preliminary results appropriate
to many-body hydrogen.

17.2 The Coupled Electronic-Ionic
Monte Carlo Method

First let us recall the basic ideas of Variational Monte Carlo (VMC) and
Diffusion Monte Carlo. VMC uses the Metropolis method to sample the ratio
of integrals and gives an upper bound to the exact ground state energy.

E =
∫
dR |ψT (R)|2EL(R)
∫
dR |ψT (R)|2

(17.1)

where EL = (HψT )/ψT is the local energy. Important features of VMC are
that any computable trial function can be used for ψT and that the statistical
uncertainty vanishes as ψT approaches an exact eigenstate.
The second QMC method we apply is diffusion Monte Carlo (DMC) in

which the Hamiltonian is applied to the VMC distribution to project out the
ground state:

φ(t) = ψT e−(H−ET )tφ(0)/ψT . (17.2)

The VMC method, though it can directly include correlation effects, is not
sufficiently accurate, at relevant temperatures, as we discuss below. The pro-
jection is implemented by a branching, drifting random walk[21] though there
are some advantages to working in a time independent framework of ground
state path integrals. To maintain a positive function, needed for efficient
sampling, the fixed-node approximation is used. Though an uncontrolled ap-
proximation, estimates of the resulting error lead to the conclusion[8] that
the systematic error of this approximation are small, especially when accurate
nodal surfaces are used.
In the CEIMC method we move the protons with a “classical” Monte

Carlo and accept or reject to satisfy detailed balance. The Metropolis accep-
tance formula is

A = min [1, exp(−Δ)] (17.3)
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where Δ = β[V (s′)− V (s)] and V (s) is the BO electronic energy, computed
with one of the QMC methods. The QMC simulation will yield a noisy esti-
mate for Δ, which we denote as δ. The exponential in the acceptance ratio
is nonlinear, so that 〈exp(−δ)〉 �= exp(〈−δ〉). The noise will introduce a bias
into our acceptance ratio formula. Such bias is unacceptable since the main
motivation for the CEIMC method is to improve the accuracy beyond what
can be achieved with alternative approaches. To avoid this bias in our sim-
ulations, we can either run until the noise is negligible, but that is very
time-consuming, or we can use the penalty method[22] which tolerates noise.
We describe this method next.

17.3 The Penalty Method

The basis of the penalty method is to satisfy detailed balance on average by
using information about the energy differences. We introduce the “instan-
taneous” acceptance probability, a(δ), which is a function of the estimated
energy difference. The average acceptance probability is the acceptance prob-
ability averaged over the noise,

A(s→ s′) =
∫ ∞

−∞
dδP (δ; s→ s′)a(δ). (17.4)

We need to satisfy detailed balance on average,

A(s→ s′) = A(s′ → s) exp [−Δ] (17.5)

If the noise is normally distributed with variance, σ, it has the distribution

P (δ) = (2σ2π)−1/2 exp
[

− (δ −Δ)
2

2σ2

]

. (17.6)

Then a simple solution that satisfies average detailed balance is

a(δ) = min
[

1, exp(−δ − σ
2

2
)
]

(17.7)

The extra −σ2/2 term causes additional rejections of trial moves due to noise.
For this reason, it is called the penalty method.
An important issue is to verify that the energy differences are normally

distributed. Recall that if moments of the energy are bounded, the central
limit theorem implies that given enough samples, the distribution of the mean
value will be Gaussian. Careful attention to the trial function to ensure that
the local energies are well behaved may be needed.
In practice, the variance is also estimated from the data, and a similar

process leads to additional penalty terms. Let χ be the estimate for σ using
n samples. Then the instantaneous acceptance probability is

a(δ, χ2, n) = min [1, exp(−δ − uB)] (17.8)
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where

uB =
χ2

2
+

χ4

4(n+ 1)
+

χ6

3(n+ 1)(n+ 3)
+ · · · (17.9)

Note that as the number of independent samples n gets large, the first term
dominates.
The noise level of a system can be characterized by the relative noise

parameter, f = (βσ)2t/t0, where t is the computer time spent reducing the
noise, and t0 is the computer time spent on other pursuits, such as optimizing
the VMC wave function or equilibrating the DMC runs. A small f means little
time is being spent on reducing noise, where a large f means much time is
being spent reducing noise. For a double well potential, the noise level that
gives the maximum efficiency is around βσ ≈ 1, with the optimal noise level
increasing as the relative noise parameter increases [22].
We can use multi–level sampling to make CEIMC more efficient [23]. An

empirical potential is used to “pre-reject” moves that would cause particles
to overlap and be rejected anyway. A trial move is proposed and accepted or
rejected based on a classical potential

A1 = min
[

1,
T (R→ R′)
T (R′ → R) exp(−βΔVcl)

]

(17.10)

where ΔVcl = Vcl(R′)−Vcl(R) and T is the sampling probability for a move.
If it is accepted at this first level, the QMC energy difference is computed
and accepted with probability

A2 = min [1, exp(−βΔVQMC − uB) exp(βΔVcl)] (17.11)

where uB is the noise penalty.
Compared to the cost of evaluating the QMC energy difference, computing

the classical energy difference is much less expensive. Reducing the number
of QMC energy difference evaluations reduces the overall computer time re-
quired. For the molecular hydrogen system, using the pre–rejection technique
with a CEIMC–DMC simulation results in a first level (classical potential)
acceptance ratio of 0.43, and a second level (quantum potential) acceptance
ratio of 0.52. The penalty method rejects additional trial moves because of
noise. If these rejections are counted as acceptances (i.e., no penalty method
or no noise), then the second level acceptance ratio would be 0.71.

17.4 Energy Differences

In Monte Carlo it is the energy difference between an old position and a trial
position that is needed. Using correlated sampling methods it is possible to
compute the energy difference with a smaller statistical error than each indi-
vidual energy. We also need to ensure that that energy difference is unbiased
and normally distributed. In this section we briefly discuss several methods
for computing that difference.
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17.4.1 Direct Difference

The most straightforward method for computing the difference in energy
between two systems is to perform independent computations for the energy
of each system. Then the energy difference and error estimate are given by

ΔE = E1 − E2 (17.12)

σ(ΔE) =
√
σ2

1 + σ
2
2 (17.13)

This method is simple and robust, but has the drawback that the error is
related to the error in computing a single system. If the nuclear positions
are close together, the energy difference is likely to be small and difficult
to resolve, since σ1 and σ2 are determined by the entire system. Hence the
computation time is proportional to the size of the system, not to how far
the ions are moved.

17.4.2 Reweighting

Reweighting is the simplest correlated sampling method. The same set of
sample points, obtained by sampling p(R) ∝ ψ2

1 is used for evaluating both
energies. The energy difference is estimated as:

ΔE = E1 − E2

=
∫
dR ψ2

1 EL1∫
dR ψ2

1
−
∫
dR ψ2

2 EL2∫
dR ψ2

2

=

∫
dR p(R)

(
ψ2

1
p(R)

)
EL1

∫
dR p(R)

(
ψ2

1
p(R)

) −
∫
dR p(R)

(
ψ2

2
p(R)

)
EL2

∫
dR p(R)

(
ψ2

2
p(R)

)
.

Then an estimate of ΔE for a finite simulation is

ΔE ≈
∑

Ri∈ψ2
1

[
EL1(Ri)
N

− w(Ri)EL2(Ri)∑
i w(Ri)

]

(17.14)

where w = ψ2
2/p(R).

Reweighting works well when ψ1 and ψ2 are not too different, and thus
have large overlap. As the overlap between them decreases, reweighting gets
worse due to large fluctuations in the weights. Eventually, one or a few large
weights will come to dominate the sum, the variance inΔE will be larger than
that of the direct method. In addition, the distribution of energy differences
will be less normal.
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17.4.3 Importance Sampling

In [20] we discussed two-sided sampling: the advantages of sampling the
points in a symmetrical way. Here we introduce a similar method, namely
the use of importance sampling to compute the energy difference. Impor-
tance sampling is conceptually similar to the reweighting described above,
however, we optimize the sampling function p(r) so as to minimize the vari-
ance of the energy difference. If we neglect sequential correlation caused by
the Markov sampling, it is straightforward to determine the optimal function:

p∗(R) ∝ |ψ2
1(R)(EL1(R)− E1)−Qψ2

2(R)(EL2(R)− E2)| (17.15)

Here E1 and E2 are the energies of the two systems, and Q =
∫
ψ2

1/
∫
ψ2

2
is the ratio of the normalization of the trial functions. In practice, since
these are unknown, one replaces them by a fuzzy estimate of their values,
namely we maximize p∗(R) within an assumed range of values of E1, E2, Q
. A nice feature of the optimal function in (17.15) is that it is symmetric in
the two systems leading to correct estimate of the fixed node energy, even
when the nodes for the two systems do not coincide. Another advantage,
is that the distribution of energy differences is bounded and the resulting
energy difference is guaranteed to be normal. This is because the sampling
probability depends on the local energy. The use of this distribution with
nodes could lead to ergodic problems, but in practice no such difficulty has
been encountered in generating samples with p∗ using “smart MC” methods.
As another sampling example, we consider a simplification of the optimal

distribution, namely Ps(R) ∝ ψ2
1+ψ

2
2 . This is quite closely related to the two-

sided method used earlier [20]. In this distribution, only a single trajectory is
computed, no local energies are needed in the sampling, and the estimation
of the noise is a bit simpler.
Shown in Fig. 17.2 is the efficiency computed with the different methods,

as a function of the proton step. The curves show that the various correlated
methods have roughly the same efficiency, which is independent of the size
of the proton move. Correlated methods are more efficient that the direct
methods, as long as the proton are moved less than ≈ 0.8Å. The optimal
importance sampling has about 10% lower variance than the reweighting. In
addition, the estimates are less biased and approach a normal distribution
much more rapidly[20]. We used the two-sided method and the importance
sampling method for computing energy differences of trial moves with VMC,
but only used the direct method with DMC.

17.5 Choice of Trial Wave Function

An essential part of the CEIMC method is the choice of the trial wave func-
tion. Variational Monte Carlo (VMC) depends crucially on the trial wave
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Fig. 17.2. Efficiency versus importance function on a system with Ne = Np =
16 and rs = 1.31. In one system the protons are taken in a sc lattice and in
the other they are displaced randomly, with an average displacement of Δ. The
diffusion constant is defined as Δ2/TCPU where TCPU is the computer time needed
to calculate the energy difference to an accuracy of 1000 K.

function to find the minimum energy. The trial wave function is also im-
portant in DMC, to reduce the variance and the projection time, and for
accurate nodal surfaces within the fixed-node method. CEIMC places special
demands since optimization of a trial wave function must be done very often
and quickly and without direct user control.
A typical form of the variational wave function used in QMC is a Jastrow

factor (two body correlations) multiplied by two Slater determinants of one
body orbitals.

ψT = exp

⎡

⎣−
∑

i<j

u(rij)

⎤

⎦Det
(
S↑
)
Det

(
S↓
)

(17.16)

The Slater determinant is taken from a mean field calculations such as
Hartree–Fock or approximate density functional theory. The cusp condition
can be used to well approximate this at short distances and RPA to determine
the behavior at large distances[8].
In the molecular phase of hydrogen we estimated that using the orbitals

determined from a separate DFT calculation would have been too slow. For
the molecular phase we resort a simpler alternative namely we used gaussian
single body orbitals, pinned in the center of the molecular bonds. Optimiza-
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tion of the gaussian, one for each of the molecules, took much of the computer
time. See [13,20] for a detailed discussion of those results.
For the metallic hydrogen phase, in a previous QMC investigation, Natoli[18]

found that simple plane wave nodes are inaccurate by 0.05 eV/atom within
the fixed-node approach at the transition to metallic hydrogen (rs = 1.31)
necessitating the use of more accurate (LDA) nodes. However it is inconve-
nient and inefficient to solve the LDA equations for each new position of the
ions in CEIMC. In addition, one has to modify the LDA orbitals to take into
account the effect of explicit electron-electron correlation. The same problem
of disordered ionic configurations arises from zero point motion of the protons
in the solid state. In earlier work on molecular hydrogen, we were unable to
use high quality LDA orbitals when the molecules were angularly disoriented
[19].
We have recently generalized the backflow and three–body wave function

to a two component system of electrons and protons at high enough den-
sity so that the electrons are delocalized and all the hydrogen molecules are
dissociated. For metallic hydrogen, as an element without a core, the for-
malism leading to the improved wave functions is simplest [24]. These wave
functions depend explicitly and continuously on the ionic variables and as a
consequence do not have to be reoptimized for movements of the ions. These
trial functions are a generalization of the backflow three–body wave functions
used very successfully in highly correlated homogeneous quantum liquids: liq-
uid 3He and electron gas. Backflow trial functions show much improvement
over the pair product getting approximately 80% of the missing correlation
and even more of the energy when done with the fixed-node method. Back-
flow wave functions utilize the power of the QMC sampling approach: one
can calculate properties of such a wave function without changing the algo-
rithm in an essential way, whileas in approaches based on explicit integration,
one is limited in the form of the trial function by the ease performing the
integration. We will discuss this functions in more detail below.

17.6 Twist Average Boundary Conditions

Almost all QMC calculations in periodic boundary conditions have assumed
that the phase of the wave function returns to the same value if a particle goes
around the periodic boundaries and returns to its original position. However,
with these boundary conditions, delocalized fermion systems converge slowly
to the thermodynamic limit because of shell effects in the filling of single
particle states. One can allow particles to pick up a phase when they wrap
around the periodic boundaries,

Ψ(r1 + Lx̂, r2, · · · ) = eiθxΨ(r1, r2, · · · ). (17.17)

The boundary condition θ = 0 is periodic boundary conditions (PBC), and
the general condition with θ �= 0, twisted boundary conditions (TBC). The
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use of twisted boundary conditions is commonplace for the solution of the
band structure problem for a periodic solid, particularly for metals. In or-
der to calculate properties of an infinite periodic solid, properties must be
averaged by integrating over the first Brillouin zone.
For a degenerate Fermi liquid, finite-size shell effects are much reduced if

the twist angle is averaged over: twist averaged boundary conditions (TABC).
This is particularly important in computing properties that are sensitive to
the single particle energies such as the kinetic energy and the magnetic sus-
ceptibility. By reducing shell effects, much more accurate estimations of the
thermodynamic limit for these properties can be obtained. What makes this
even more important is that the most accurate quantum methods have com-
putational demands which increase rapidly with the number of fermions.
Examples of such methods are exact diagonalization (exponential increase in
CPU time with N), variational Monte Carlo (VMC) with wave functions hav-
ing backflow and three-body terms [25,26] (increases as N4), and transient-
estimate and released-node Diffusion Monte Carlo methods [27] (exponential
increase with N). Methods which can extrapolate more rapidly to the ther-
modynamic limit are crucial in obtaining high accuracy.
Twist averaging is especially advantageous in combination with CEIMC

(i.e. QMC) because the averaging does not necessarily slow down the eval-
uation of averages, except for the necessity of doing complex rather than
real arithmetic. In a metallic system, such as hydrogen at even higher pres-
sure when it becomes a simple metal, results in the thermodynamic limit
require careful integration near the Fermi surface because the occupation of
states becomes discontinuous. Within LDA this requires “k–point” integra-
tion, which slows down the calculation linearly in the number of k-points
required. Within QMC such k-point integration takes the form of an average
over the (phase) twist of the boundary condition and can be done in parallel
with the average over electronic configurations without significantly adding
to the computational effort. We typically spawn about 100 distinct QMC
processes, run for a fixed time, and then average the resulting properties.

17.7 Fluid Molecular Hydrogen

We now describe our calculations on liquid molecular hydrogen. First of all,
we examine the accuracy of several methods for computing total energy. We
took several configurations from PIMC simulations at 5000K at two densities
(rs = 1.86 and rs = 2.0), and compared the electronic energy using VMC,
DMC, DFT-LDA, and some empirical potentials. The DFT–LDA results were
obtained from a plane wave code using an energy cutoff of 60Rydbergs, and
using the Γ point approximation [28]. The empirical potentials we used are
the Silvera–Goldman [29] and the Diep–Johnson [30,31]. To these we added
the energy from the Kolos [32] intramolecular potential to get the energy as
a function of the bond length variations. The Silvera–Goldman potential was
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Fig. 17.3. Electronic energy for several configurations computed by various meth-
ods. The energy is relative to an isolated H2 molecule.

obtained by fitting to low temperature experimental data, with pressures up
to 20Kbar, and is isotropic. The Diep–Johnson potential is the most recent
in a number of potentials for the isolated H2–H2 system. It was fit to the
results of accurate quantum chemistry calculations for a number of H2–H2
configurations and included anisotropic effects in the potential.
The energies relative to an isolated H2 molecule are shown in Fig. 17.3.

The first thing we notice is that the classical potentials are more accurate
than VMC or DFT. The Silvera–Goldman does a good job of reproducing
the DMC results. Some of the failures of the SG potential can be attributed
to the lack of anisotropy. The isolated H2–H2 potential (Diep–Johnson) has
much weaker interactions, compared with interactions in a denser system.
The PIMC method itself gives an average energy of about 0.07(3)Ha for

both densities. Improvements in the fermion nodes and in other aspects of
the PIMC calculation appear to lower the energy [16,33,34], although the
error bars are still quite large. The PIMC energy is in rough agreement with
the DMC energy.
As mentioned above, we used the Silvera–Goldman potential for pre–

rejection. As seen in the Fig. 17.3, it resembles the DMC potential even
though it lacks anisotropy. Each trial move consisted of moving multiple
molecules (usually four). This increased efficiency by amortizing the cost of
the QMC calculation. Each molecular move was decomposed into a transla-
tion of the center of mass, a rotation of the molecule, and a change in the
bond length.
Shown in Tables 17.1–17.2 are CEIMC results at three state points two

of which can be compared with the gas gun data of Holmes et al. [35]. The
pressure is given in Table 17.1 with results from the gas gun experiments, the
free energy model of Saumon and Chabrier [36,37,38], from simulations us-
ing the Silvera–Goldman potential, and from our CEIMC simulations. These
state points are in the fluid molecular H2 phase. For the gas gun experiments,
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the uncertainties in the measured temperatures are around 100–200K. The
experimental uncertainties in the volume and pressure were not given, but
previous work indicates that they are about 1–2% [39].
We did CEIMC calculations using VMC or DMC for computing the un-

derlying electronic energy, which are the first such QMC calculations in this
range. The simulations at rs = 2.1 and rs = 1.8 were done with 32 molecules,
and the simulations at rs = 2.202 were done with 16 molecules. We see that
the pressures from VMC and DMC are very similar, and that for rs = 2.1 we
get good agreement with experiment.
There is a larger discrepancy with experiment at rs = 2.202. The finite

size effects are fairly large, especially with DMC. We also did simulations
at rs = 2.1 with 16 molecules and obtained pressures of 0.264(3)Mbar for
CEIMC–VMC and 0.129(4)Mbar for CEIMC–DMC. The Silvera–Goldman
potential showed much smaller finite size effects than the CEIMC simulations,
so we conclude that the electronic part of the simulation is largely responsible
for the observed finite size effects.
The energies for all these systems are given in Table 17.2. The energy at

rs = 2.1 with 16 molecules for CEIMC–VMC is 0.0711(4)Ha and for CEIMC–
DMC is 0.0721(8)Ha. The proton–proton distribution functions comparing
CEIMC–VMC and CEIMC–DMC are shown in Fig. 17.4. The VMC and
DMC distribution functions look similar, with the first large intramolecular
peak around r = 1.4 and the intermolecular peak around r = 4.5.

Table 17.1. Pressure from simulations and shock wave experiments

rs T(K) Pressure (Mbar)
Gasgun S–C S–G CEIMC–VMC CEIMC–DMC

2.100 4530 0.234 0.213 0.201 0.226(4) 0.225(3)
2.202 2820 0.120 0.125 0.116 0.105(6) 0.10(5)
1.800 3000 - - 0.528 - 0.357(8)

Table 17.2. Energy from simulations and models, relative to the ground state of
an isolated H2 molecule. The H2 column is a single thermally excited molecule plus
the quantum vibrational KE.

rs T(K) Energy (Ha/molecule)
H2 S–C S–G CEIMC–VMC CEIM-C-DMC

2.100 4530 0.0493 0.0643 0.0689 0.0663(8) 0.0617(2)
2.202 2820 0.0290 0.0367 0.0408 0.0305(8) 0.0334(9)
1.800 3000 0.0311 - 0.0722 - 0.048(1)

The CEIMC–VMC simulations at rs = 1.8 and 3000K never converged.
Starting from a liquid state, the energy decreased during the entire simula-
tion. Visualization of the configurations revealed that they were forming a
plane. It is not clear whether it was trying to freeze, or forming structures
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Fig. 17.4. Proton pair distribution, g(r), for (a) rs = 2.1 and T=4530K (b)
rs = 2.202 and T=2820K

similar to those found in DFT–LDA calculations with insufficient Brillouin
zone sampling[40,41]. (note that the molecular hydrogen calculations were
done at the Γ point.)The CEIMC–DMC simulations did not appear to have
any difficulty, so it seems the VMC behavior was due to inadequacies of the
wave function.
Hohl et al.[40] did DFT–LDA simulations at rs = 1.78 and T=3000K,

which is very close to our simulations at rs = 1.8. The resulting proton-proton
distribution functions are compared in Fig. 17.5. The CEIMC distribution has
more molecules and they are more tightly bound. The discrepancy between
CEIMC and LDA in the intramolecular portion of the curve has several pos-
sible causes. On the CEIMC side, it may be due to lack of convergence or to
the molecular nature of the wave function, which does not allow dissociation.
The shift of the molecular bond length peak can be accounted for because
LDA is known to overestimate the bond length of a free hydrogen molecule
[40] which would account for the shifted location of the bond length peak.
The deficiencies of LDA may account for it preferring fewer and less tightly
bound molecules.

17.8 The Atomic–Metallic Phase

In this section, we describe preliminary results for metallic atomic hydro-
gen from a recent implementation of the method using an improved wave
functions including threebody and backflow terms and taking advantage of
averaging over the twist angle to minimize size effects.
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Fig. 17.5. The proton pair distribution function, g(r), near rs = 1.8 and T=3000K.

17.8.1 Trial Wave Function and Optimization

We have seen that an important part of the CPU time is needed in the opti-
mization of the molecular trial wave functions which contain a number of vari-
ational parameters proportional to the number of molecules and which need
to be optimized individually for each protonic steps. A major improvement
in the efficiency of the method can be achieved by using more sophisticated
wave functions, namely analytic functions in terms of the proton positions
which move with the protons and which depend on few variational param-
eters (about 10, regardless of the number of particles). Moreover, one can
explore the possibility of optimizing the variational parameters only once at
the beginning of the calculation, either on ordered or disordered protonic
configurations, and using the optimized wave function during the simulation.
In this section, we consider hydrogen at densities at which molecules are dis-
sociated (rs ≤ 1.31) and the system is metallic. We will therefore avoid the
complications arising from the presence of bound states (either molecular or
atomic). In this case one can show that improved wave functions with respect
to the simple Slater-Jastrow form includes backflow and threebody terms be-
tween electrons and protons [24] in a very similar fashion as the ones used
by Kwon et al.[25,26] for the electron gas. We assume a trial wave function
of the form

ΨT (R) = det(eiki·xj )exp

⎛

⎝−
N∑

i<j

ũ(rij)− λT

2

N∑

l=1

G(l) ·G(l)
⎞

⎠ (17.18)
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where

xi = ri +
N∑

j �=i

η(rij)(ri − rj) (17.19)

G(l) =
N∑

i �=l

ξ(rli)(rl − ri) (17.20)

ũ(r) = u(r)− λT ξ
2(r)r2 (17.21)

with

η(r) = λbexp[−(r − rb)2/w2
b ] (17.22)

ξ(r) = exp[−(r − rT )2/w2
T ] (17.23)

and u(r) is an optimized version of the RPA pseudopotential [17].
In what follows we only consider the effect of electron–proton backflow

and electron–proton–proton three body terms, while the electronic part of
the wave function is of the simple Slater–Jastrow form. To establish the
goodness of this wave function for metallic hydrogen we perform VMC and
DMC calculation for 16 protons on a bcc lattice at rs = 1.31. In Table 17.3 we
compare the energy and the variance of the local energy of this wave function
with data obtained with the simple Slater-Jastrow wavefunction and with an
improved wavefunction in which a determinant of single body orbital from
a separate LDA calculation has been used [18]. From these results we infer
that the nodes of the new wavefunction are as accurate as the LDA nodes.

Table 17.3. rs = 1.31. Energy and variance for 16 protons in the bcc lat-
tice. SJ, SJ3B and LDA indicate optimized Slater–Jastrow, optimized Slater–
Jastrow+three–body+backflow, and LDA nodes respectively. Energies per particle
are in Rydbergs.

EV MC σ2
V MC EDMC

SJ -0.4754(2) 0.0764(9) -0.4857(1)

SJ3B -0.4857(2) 0.0274(2) -0.4900(1)

LDA -0.4870(10) -0.4890(5)

Having established that our wavefunction at rs = 1.31 is as good as the
most accurate wavefunction used for metallic hydrogen so far, we continue
our study at slightly higher density, namely rs = 1. It can be shown that the
above form of the wavefunction is obtained using perturbation theory from
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Table 17.4. rs = 1, T = 5000 K, Np = Ne = 16. Optimized values of the variational
parameters for the VMC trial function. The values are obtained minimizing local
energy and variance for 1000 different equilibrium configurations.

λb rb wb λT rT wT λe we E(a.u.)
SJ – – – — – – – – -0.117(1)

SJE — — — – – – 0.06167 0.9497 -0.1180(4)
SJB -0.60824 -1.3726 1.44822 – – – – – -0.1207(4)

SJEB -0.45828 -0.60202 0.91273 – – – -0.0874 1.7002 -0.1227(5)
SJE3B -0.4671 -0.6217 1.0193 -2.4676 -1.0917 3.0029 -0.0844 1.5130 -0.1238(2)

the high density limit and we expect that its accuracy improves for decreasing
rs.
We first perform a number of optimizations of the trial wave function.

Beside the RPA e–p Jastrow, we consider an extra 2 body (e–p) gaussian
term with two variational parameters (λe and we). In Table 17.4 we report
the values of the variational parameters obtained minimizing a linear com-
bination of the local energy and its variance over a set of different protons
and electrons configurations. Typically 1000 configurations have been used,
by saving a configuration after 10 or 20 protonic steps during a previous
run. We also studied the relative importance of the different terms in the
trial wavefunction by performing calculations with partially improved wave
functions. In Fig. 17.6 we compare the pair correlation functions for the var-
ious calculations in Table 17.4. No significant difference is observed in the
electron–electron and in the proton–proton pair correlation functions among
different forms of the trial function. We can see that the cooperative effects
of the optimized Jastrow factor and the backflow term are responsible of
an enhancing of electron-proton correlation as seen in the gep(r). Inclusion of
three–body terms lowers the energy but does not change the pair correlations.
In principle, the optimization study could be repeated at each tempera-

ture needed for the CEIMC simulation. It is therefore of practical interest
to investigate the transferability at finite temperature of wavefunctions opti-
mized for the lattice configurations of protons.
An additional ingredient discussed above and crucial for a metallic system

are finite size effects. It has been shown recently [42] that the very irregular
behavior of the energy versus N observed in the presence of a Fermi surface
can be reduced to the classical 1/N behaviour by averaging over the twist of
the wavefunction. We have implemented the twist averaged boundary condi-
tions in the calculation of the energy differences needed to make the protonic
moves in the CEIMC. We average over 1000 different twist angles in the three
dimensional interval (−π, π) found to be sufficient in the electron gas[42]. The
additional issue of whether optimization of the variational parameters need
to be done with or without twist averaging was investigated. We compare in
Table 17.5 the results of single phase optimization and phase averaging opti-
mizations for protons in the bcc lattice and at T=5000K. The fourth row is
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the result of an optimization with twist averaging at T=0K, while the fifth
row is a run with the values of the variational parameters optimal for the Γ
point, always at T=0K. We observe an excellent agreement of the energies
and we conclude that we can safely optimize the wave function using the Γ
point and use the obtained variational parameters for all twist angles.

0 0.5 1 1.5 2
r/a0

0

1

2
SJ
SJE
SJB
SJEB
SJE3B

gpp(r)
gep(r)

gee(r) spin-unlike

gee(r) spin-like

Fig. 17.6. rs = 1, T = 5000 K, Ne = Np = 16 spin unpolarized. Pair correlations
functions with various trial wave functions. The entries in the legend corresponds
to the entries in Table 17.4. The gep(r) have been shifted downward by 0.5 for sake
of clarity.

Table 17.5. rs = 1, Np = Ne = 16 spin unpolarized. Optimized values of the vari-
ational parameters for the VMC trial function. The values are obtained minimizing
local energy and variance for 1000 different equilibrium configurations.

T(K) #phases λb rb wb λ3 r3 w3 λe we E(a.u.)

0 1 – – – — – – – – -0.1306(2)
0 1 -0.2574 -0.2172 0.7623 -2.3742 -1.8150 1.9694 -0.0496 1.7937 -0.1353(1)

0 1000 – – – – – – – – -0.1779(1)
0 1000 -0.2386 -0.1757 0.6613 -2.2609 -1.8326 3.3130 -0.0475 2.0337 -0.18254(3)
0 1000 -0.2574 -0.2172 0.7623 -2.3742 -1.8150 1.9694 -0.0496 1.7937 -0.18253(3)

5000 1 -0.2574 -0.2172 0.7623 -2.3742 -1.8150 1.9694 -0.0496 1.7937 -0.1237(2)
5000 1000 -0.2574 -0.2172 0.7623 -2.3742 -1.8150 1.9694 -0.0496 1.7937 -0.1708(3)
5000 1000 -0.4611 -0.7339 1.1287 -2.0402 -2.2098 3.0213 -0.0949 1.2389 -0.1709(3)
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The sixth row in the table is the result of a simulation at T=5000K using
the values of the variational parameters optimal for T=0K (bcc lattice).
The energy should be compared with the result of the entry SJE3B in Table
17.4. The difference in energy is within error bars and indicates that we can
safely optimize the wave function on lattice configurations for use at finite
temperature to avoid repeating the optimization at each temperature. In
the last two rows of Table 17.5 we report results of two runs at T=5000K
with twist averaging. In the first run the variational parameters optimized
in the bcc configuration and with the Γ point have been used. In the second
one new values of the parameters, obtained by optimization over a set of
configurations stored in the previous twist-averaged run, have been used.
The excellent agreement on the energy (and on the variance of the local
energy, not shown in the table) confirms that optimization of the variational
parameters can be safely performed in the lattice configuration and with a
single phase.

17.8.2 Comparison with PIMC

In order to establish the accuracy of the CEIMC method, we compare CEIMC
and PIMC results at high temperatures and pressures. To eliminate the
“fermion sign problem”, the R-PIMC technique for fermions assumes the
nodal surfaces of a trial density matrix. In most of the applications, free parti-
cle nodal surfaces, either temperature dependent or in the ground state, have
been used[43,44,45]. More recently, variational nodes which account for bound
states have been implemented in the study of the plasma phase transition
[16,33]. However, the use of temperature dependent nodes, which break the
imaginary time translational symmetry, is limited to quite high temperature,
T ≥ 0.1TF where TF (a.u.) = 1.84158/r2s is the electronic Fermi temperature.
Below this threshold, the Monte Carlo sampling becomes extremely inefficient
and the method impractical. This pathology is not encountered when using
ground state nodes, which preserve the original imaginary-time symmetry and

Table 17.6. rs = 1, Np = Ne = 18. Comparison between PIMC and CEIMC
methods at T=10000K and T=5000K.

method T/103(K) M Ke/Ne Kt/N VN/N E/N P

PIMC 10 500 1.477(9) 0.763(5) -0.7771(6) -0.0141(6) 0.119(2)

PIMC 10 1000 1.48(1) 0.764(6) -0.7820(8) -0.0180(7) 0.119(2)

CEIMC 10 – 1.3767(4) 0.7121(2) -0.7995(2) -0.0874(4) 0.0994(1)

PIMC 5 1000 1.39(1) 0.707(5) -0.791(1) -0.084(6) 0.099(2)

CEIMC 5 – 1.317(1) 0.6703(3) -0.7939(2) -0.1236(2) 0.0870(8)
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are expected to become as accurate as the temperature dependent nodes at
low enough temperature. At rs = 1 (0.1TF = 0.18158a.u. ≈ 57300K), we per-
form calculation at T=10000K and T=5000K and we exploit the PIMC with
free particle ground state nodes. In Table 17.6 we compare energies and pres-
sure from PIMC and CEIMC simulations. At T=10000K, two different PIMC
studies are reported, with M = 500 and M = 1000 time slices respectively,
which correspond to τ = 0.063(a.u.)−1 and τ = 0.0315(a.u.)−1. The smaller
value satisfy the empirical criteria for good convergence τ ≤ 0.05/r2s(a.u.)−1

we have established in the plasma phase at higher temperature [44]. At
T=5000K only M = 1000 has been used and therefore the convergence with
the number of time slices is limited.
We see small differences between PIMC and CEIMC. In particular, the

electronic kinetic energy in PIMC is always slightly higher than in CEIMC.
At the same time, CEIMC determined potential energy is lower than the
PIMC value and this results in a significantly lower total energy of CEIMC
compared to PIMC. The difference between PIMC and CEIMC seems to
decrease with temperature. To judge the quality of these results, we should
keep in mind advantages and limitations of each method. PIMC uses the
“exact” bosonic action, the electrons are at finite temperature and excited
states are taken into account, although in a approximate way because of
the simplified nodal restriction: its approximation for the nodal surface is a
Slater determinant of plane waves. CEIMC instead assumes a trial functions
which, at the correlation (bosonic) level is certainly an approximation to
the true bosonic action used in PIMC. Moreover, the electrons are in their
ground state by construction. However, the trial wavefunction in CEIMC is
better (for the ground state) than the one used in PIMC. Because of these
differences we think that the comparison between the two methods shows
agreement although a more detailed investigation is in order.
Comparison between PIMC and CEIMC for the pair correlation functions

at T=10000K and T=5000K is given in Figs. 17.7 and 17.8 respectively. In
Fig. 17.7 we first note a good agreement between the two PIMC calculations
which show that pair correlation functions are much less sensible to finite
imaginary time step errors. In general for all correlation functions except the
electron-proton ones, the agreement between PIMC and CEIMC is excellent.
At T=10000K the electron–proton pair correlation function from PIMC is

in very good agreement with the result of the CEIMC method where a simple
Slater–Jastrow trial wave function is used. Improving the trial wave function
as discussed in the previous subsection worsen the agreement. The oppo-
site behavior is observed at T=5000K where the better agreement between
PIMC and CEIMC is observed with the improved wave function (SJE3B in
the figure). We interpret this behaviour as follows: at lower temperature the
improved trial wave function (17.18) provides the “correct” electron–proton
correlation (through the combined effect of the optimized Jastrow and the
electron–proton backflow, see the discussion relative to Fig. 17.6 in the pre-
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Fig. 17.7. Pair correlation functions at T=10000K. Comparison between PIMC
and CEIMC. gep(r) have been shifted by −0.5 for sake of clarity.

vious subsection). At this temperature the electronic thermal effects on the
electron–proton correlation are quite small and the electronic ground state
as provided by CEIMC is quite accurate. Instead at higher temperatures
electron–proton scattering is influenced by excited electronic states which
are not considered in the CEIMC method. As a result the electron–proton
pair correlation function shows a weaker correlation near the origin and it
is in better agreement with the CEIMC result with the Slater–Jastrow trial
function rather than with the CEIMC result for the improved trial function.

17.8.3 Hydrogen Equation of State
and Solid–Liquid Phase Transition of the Protons

We present in this subsection, results for the equation of state (EOS) of hy-
drogen in the metallic phase including the solid–liquid transition of protons.
These results are preliminary in various respects. Firstly, the electrons are
treated at the variational level and no use of Projection/Diffusion Monte
Carlo was attempted. Secondly, the protons are considered as classical point
particles although it is well known that zero point motion at such high pres-
sure can be significant (at least around the phase transition). Finally, we
have data at a single density (rs = 1) and for a single system size, namely
Ne = Np = 32 (compatible with the fcc lattice) and we cannot address, at
this stage, the issue of the relative stability of different crystal structures.
Nonetheless, we believe these results are interesting because they show the
applicability and provide a benchmark of the method.
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Fig. 17.8. Pair correlation functions at T=5000K. Comparison between PIMC and
CEIMC. gep(r) have been shifted by −0.5 for sake of clarity.

Table 17.7. Simulation details: rs = 1, Np = Ne = 32. Δp is the maximum
amplitude of the protonic step in units of the Bohr radius, Mel is the total number
of electronic steps per protonic step, (βσ)2 is the relative noise level entering in
the penalty method, Pacc is the average acceptance of the protonic moves, η is
the noise rejection ratio defined earlier, Dp is the diffusion constant in protonic
configurational space with respect to CPU time.

T (K) Δp Mel (βσ)2 Pacc η Dp × 104 time/step(sec) #proc machine

5000 0.03 15000 0.037(4) 0.80 0.0084 1.9(2) 5.96 32 beowulf

4000 0.03 15000 0.092(8) 0.77 0.013 3.8(3) 5.93 32 beowulf

3000 0.025 15000 0.10(2) 0.76 0.012 3.2(3) 10.3 16 origin3800

2000 0.03 15000 0.29(5) 0.68 0.033 2.6(3) 10.3 16 origin3800

1000 0.02 15000 0.30(3) 0.64 0.06 3.6(3) 10.3 16 origin3800

700 0.02 15000 0.418(4) 0.55 0.10 3.6(3) 9.90 16 origin3800

500 0.02 15000 0.747(5) 0.43 0.16 0.47(8) 8.93 32 platinum

300 0.015 18000 0.855(9) 0.39 0.21 0.18(1) 7.02 32 platinum

In Table 17.7, we report various details of the simulations such as the
maximum amplitude of the protonic step in units of the Bohr radius Δp, the
total number of electronic steps per protonic stepMel, the relative noise level
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for the penalty method (βσ)2, the acceptance for the protonic move and the
noise rejection ratio η [20]. A measure of the computational efficiency can
be defined as the proton diffusion in configurational space with respect to
the CPU time Dp = (

∑
p[ΔRp]2)/TCPU . In the table we report the values

obtained in our simulations in units of a20/sec. In addition, the CPU time per
protonic step, the number of processors and the machine used are reported1.
Note thatMel = 15000 is the minimum number of electronic steps needed

to average over 1000 different twist angles. Except at the lowest temperatures
(T ≤500K) such large number of electronic steps would not be necessary in
order to reduce the noise level. Further improvements in efficiency could be
gained by reducing the number of electronic steps or the number of angles
averaged over for T > 500K.

Table 17.8. rs = 1, Np = Ne = 32, spin unpolarized

T (K) Ktot Vc Etot σ2
E P (Mbars) γ

5000 0.6241(2) -0.7820(1) -0.1579(2) 0.056(2) 21.72(2) liquid

4000 0.0620(2) -0.7821(2) -0.1619(1) 0.055(3) 21.35(1) liquid

3000 0.0616(1) -0.7817(1) -0.1662(2) 0.051(7) 20.93(1) liquid

2000 0.06122(6) -0.7842(1) -0.1702(1) 0.050(2) 20.588(6) liquid

1500 0.61113(7) -0.7848(1) -0.1737(1) 0.046(1) 20.374(6) melted

1000 0.60847(6) -0.78372(8) -0.17525(4) 0.0446(5) 20.181(3) liquid

1000 0.60894(5) -0.78549(9) -0.17655(7) 0.0416(5) 20.143(3) 0.137(4)

700 0.60787(3) -0.78614(5) -0.17817(8) 0.0402(6) 20.017(6) 0.109(2)

500 0.60811(3) -0.78718(3) -0.17913(5) 0.048(4) 19.985(3) 0.085(3)

300 0.60680(4) -0.78686(2) -0.18017(2) 0.042(3) 19.874(3) 0.083(1)

In Table 17.8 we report thermodynamic quantities for the system at
various temperatures in the range T ∈[300K,5000K]. The corresponding
electron–protons and protons–protons pair correlation functions are given in
Figs. 17.9 and 17.10 respectively. At each temperature, equilibrium runs of at
least 20000 protonic steps have been performed. Statistics are collected every
20–50 steps. Besides energies and pressure we compute the Lindemann ratio
1 Beowulf is a IBMx330 cluster with PentiumIII/1.13GHz in CINECA–ITALY

(www.cineca.it/HPSystems/Resources/LinuxCluster), origin3800 is a SGI–
origin3800 with R14000/500MHz in CINES–FRANCE (www.cines.fr)
and platinum is a IBMx330 cluster with PentiumIII/1GHz in NCSA–
USA (www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IA32LinuxCluster-
/TechSummary).
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Fig. 17.9. rs = 1, Ne = Np = 32 spin unpolarized. Temperature dependence of the
electron–proton pair correlation functions. The y scale is logarithmic.
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Fig. 17.10. rs = 1, Ne = Np = 32 spin unpolarized. Temperature dependence of
the proton–proton pair correlation functions. Solid lines indicate solid state while
dashed lines represent liquid situations. The delta like behaviour is the T = 0
correlation function. Reported solid and liquid temperature are given in the figure

γ for the fcc structure. In the upper part of the table, i.e. at higher tempera-
ture, we report in the last column the status of the system. At T=1500K the
system initially in the fcc configuration is found to melt after few thousands
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steps. Conversely at T=500K we started the simulation in a disordered state
and the system spontaneously ordered into the fcc structure. At T=1000K in-
stead, a system starting in a lattice configuration remains solid and a system
starting from a liquid configuration remains liquid within the length of the
runs. The Lindemann criterion for classical melting locates the transition at
the temperature at which γ � 0.15. From the result in the table the fcc–liquid
transition temperature should be located between 1000K and 1500K. Previ-
ous investigation of such a transition has been performed by Car–Parrinello
Molecular Dynamics [46]. This study suggests that at rs = 1 the structure
of the system at T = 0K is hcp but for T >100K the bcc structure is more
favorable (as in this work, protons were considered as classical particles). The
melting temperature of the bcc lattice has been estimated by the Lindemann
criterion around 350K, significantly lower than the present estimate. We are
presently investigating the system of 54 protons in order to study the stability
of the bcc structure and the melting transition temperature.

17.9 Conclusions and Outlook

In this article we have discussed the CEIMC method, along with a number
of supporting developments to make it computationally efficient. Using the
penalty method, we have shown how it is possible to formulate a classical
Monte Carlo, with the energy difference having statistical noise, without af-
fecting the asymptotic distribution of the protons. We have made significant
progress on several related issues: the computation of energy differences, the
development of wavefunctions that do not require optimization of variational
parameters and use of twist averaged boundary conditions. We have applied
the method to an important many-body system, molecular and metallic hy-
drogen at high pressure. We have shown that the method is feasible on current
multi-processor computers.
One of the advantages of QMC over DFT, in addition to higher accuracy,

is the different way basis sets enter. Single particle methods usually work
in a “wave basis”, where the wave function is expanded in plane waves or
Gaussian orbitals. In contrast QMC uses a particle basis. A smooth basis
(the trial wave function) is indeed used within VMC, however, cusps and
other features are easily added without slowing down the computation. For
this reason, the bare Coulomb interaction can be easily treated, while in LDA,
typically a smooth pseudopotential is needed, even for hydrogen, to avoid an
excessive number of basis functions.
As shown in the example of twist-averaged boundary conditions, the

CEIMC method has further advantages when additional averages are to be
performed. In the present calculation, we assumed classical protons for sim-
plicity. Of course, quantum effects of the protons are important and have
been included in previous QMC and LDA calculations. But it is not hard to
see that it is possible to do path integrals of the nuclei within the penalty
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method for very little increased cost over classical nuclei. A path integral sim-
ulation creates a path ofM slices, with each slice at an effective temperature
of MT . We then need to perform M separate electronic simulations, one for
each slice. However, the penalty method requires the error level to be approx-
imately kBT . Then the required error level at each slice is MkBT , so each of
the M separate QMC simulations need not be as accurate. In contrast, for
PI-LDA calculations, M time slices will take M times as long.
Our impression is that the CEIMC method on this application of high

pressure hydrogen has the same order of computational demands as Car-
Parrinello plane-wave methods: our results suggest that the CEIMC method
may turn out to be both more accurate and faster. The processing power
of current multi-processors is enough that significant applications are being
pursued, giving much more accurate results for systems of hydrogen and
helium including all effects of electron correlation and quantum zero point
motion. In general, we expect the CEIMC method to be most useful when
there are additional averages to be performed perhaps due to disorder or
quantum effects. On the other hand DFT methods are more efficient for
optimizing molecular geometries where the existing functional are known to
be locally accurate or for dynamical studies outside the scope of CEIMC.
Tests for non-hydrogenic systems are needed to find the performance of

the algorithms on a broader spectrum of applications. The use of pseudopo-
tentials within QMC to treat atoms with inner core is well tested. What is
not clear is how much time will be needed to generate trial functions, and
to reduce the noise level to acceptable limits. Also interesting is to develop a
dynamical version of CEIMC, i.e. CEIMD. Many of the techniques discussed
here such as twist averaging, advanced trial functions and energy difference
methods are immediately applicable. However, while it is possible within MC
to allow quantum noise, it is clear that the noise level on the forces must
be much smaller, since otherwise the generated trajectories will be quite dif-
ferent. The effect of the quantum noise, in adding a fictitious heat bath to
the classical system, may negate important aspects of the rigorous approach
we have followed. One possible approach is to locally fit the potential surface
generated within QMC to a smooth function, thereby reducing the noise level.
Clearly, further work is needed to allow this next step in the development of
microscopic simulation algorithms.
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